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What is Indoor Localization?
• Finding location of people, things, and places indoors
• Market size: $18.74 billion by 2025*
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Navigation Tracking
* https://www.reportlinker.com/p05763837/Indoor-Location-based-Services-Market-Analysis-Report-By-Product-By-Technology-By-Application-By-End-Use-And-Segment-Forecasts.html
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Ultra-wideband (UWB) Radios
• “GPS at the scale of your living room” [Apple Inc.]
• Accurate (10 cm)
• Global market size of $58 million in 2019*

• At least 75 million units of iPhone 11 by the end of 2019**

• The UWB market is expected to grow significantly
• iPhone 12
• Android
• UWB Alliance and FiRa Consortium

NXP, Qorvo, Decawave, Bosch, Samsung, Hyundai

* https://www.absolutereports.com/global-ultra-wideband-market-15311454
** https://www.bloomberg.com/news/articles/2019-10-14/apple-s-lower-prices-users-aging-handsets-drive-iphone-demand

Decawave DW1000 chip
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Wireless interference will be an issue
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UWB Interference

• Avoiding Interference
• Time-division multiple access (TDMA)
• ALOHA
• Carrier sensing not feasible

• Mitigating Interference
• Forward Error Correction (FEC)
• Retransmissions

• Exploiting Interference
• Concurrent Transmissions
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Destructive interference prevents packet reception
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Wireless Interference vs.
Scalability and Efficiency
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Sequential Responses

Sequential Localization - 2
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Sequential Responses

Sequential Localization - 3
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Sequential Responses

Sequential Localization - 4
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Concurrent Localization - 1
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Concurrent Localization - 2
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Concurrent Packets in IEEE 802.15.4 UWB PHY

We can only demodulate Data from the first arriving packet
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We can observe combined preamble in 

channel impulse response (CIR)
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Preamble 1 SFD 1 PHR 1 Data 1

Preamble 2 SFD 2 PHR 2 Data 2
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TX Scheduling Uncertainty

• In concurrent localization protocols: !"# = !%# + '"#
• Difference between precision of !"# and !%#
• Causes inaccuracy in ToA estimation
• Causes up to 2.4 m of localization error in DW1000

• State-of-the-art concurrent TDoA solutions
• Wired correction: deployment issues
• Wireless correction: additional packets, antenna delay calibration, 1-cycle lag

• Our solution (AnguLoc): Concurrent AoA
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Concurrency-based Localization Solutions
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Related Work Feasibility
Study

Solution for
TX Scheduling Uncertainty Accuracy Localization

Method
TREK1000 (Sequential) - - 0.30 m TWR1

Corbalán [EWSN’18]
Concurrent 

TWR
! ~ 2 m TWR

Corbalán [IPSN’19]
Chorus

Concurrent 
TDoA2 ! ~ 1.2 m TDoA

Großwindhager [IPSN’19]
SnapLoc

Concurrent 
TDoA

Wired/Wireless Correction
~ 1.2 m

(without correction)5 TDoA

Heydariaan [DCOSS’19] ! ! ~ 2 m TWR

Heydariaan [DCOSS’20]
AnguLoc

Concurrent 
AoA3

Immune Against TX 
Scheduling Uncertainty 0.67 m ADoA4

1 TWR: Two-Way Ranging
2 TDoA: Time Difference of Arrival

3 AoA: Angle of Arrival
4 ADoA: Angle Difference of Arrival

Heydariaan, Dabirian & Gnawali - University of Houston

5 Authors said they achieved better results with wired/wireless corrections
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Concurrent Angle of Arrival Localization –
Challenges and Opportunities
• Opportunities
• Concurrent AoA is more accurate than concurrent TDoA

Concurrent AoA is not affected by TX scheduling uncertainty
• Self-localization is highly scalable

An unlimited number of tags

• Challenges
• Front-back ambiguity of angle measurements
• Unknown tag tilting
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Contributions

• Feasibility of concurrent AoA
• Angle difference of arrival algorithm overcomes
• Front-back ambiguity of angle measurements
• Unknown tag tilting

• Increasing accuracy of concurrency-based localization

Heydariaan, Dabirian & Gnawali - University of Houston 16



Angle of Arrival Using Phase Difference of Arrival
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Angle of Arrival with two receivers running 
on the same crystal oscillator (Xtal). Heydariaan, Dabirian & Gnawali - University of Houston
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Angle of Arrival Hardware
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Decawave PDoA node (DWM1002)



Concurrent Angle of Arrival

• AoA is ! = sin&' ()
*+,

• - is the wavelength
• . is the distance between 

antennas
• / is the difference in phase 

between two antennas 
calculated at each 
responder’s first path
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We can calculate phase information by detecting 
first path of each responder
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Concurrent Self-Localization Protocol
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
2. Ai’s reply concurrently
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
2. Ai’s reply concurrently
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
2. Ai’s reply concurrently
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
2. Ai’s reply concurrently
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Concurrent Self-Localization Protocol
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1. AREF broadcasts SYNC
2. Ai’s reply concurrently
3. Tags (T1 through T6) 

receive all replies and 
measure AoA
concurrently
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Evaluation of Concurrent AoA

• Sequential AoA as baseline
• Ideally should have similar accuracy
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Sequential AoA
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Heydariaan, Dabirian & Gnawali - University of Houston



Concurrent AoA Experimental Setup
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We change angle of one responder when the 
other one is static. Dipole antenna performance 
expected to degrade near extreme angles.

We change distance of one responder when 
the other one is static. C-AoA performance 
expected to degrade at longer distances.
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Performance of Concurrent AoA for 2 anchors
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Concurrency does not significantly affect AoA estimation 
in different angles (100 measurements per data point)

Concurrency only affects AoA estimation in longer distances 
(100 measurements per data point)
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Performance of Concurrent AoA for 3+ anchors
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Concurrency does not significantly affect AoA estimation when adding more anchors 
showing 100 measurements per box plot. Number of receiver tags are still unlimited.
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2D Self-Localization with Angle Difference of Arrival
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2D Self-Localization with Angle Difference of Arrival
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A3

θ1,2

A1 A2

Angle difference between 1 pair of anchors.
Possible locations are shown with 2 curves.
Infinite possible locations.



2D Self-Localization with Angle Difference of Arrival
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Angle difference between 2 pairs of anchors.
Possible locations are shown with 4 curves.
2 possible locations.



2D Self-Localization with Angle Difference of Arrival
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2D Self-Localization with Angle Difference of Arrival
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ADoA Challenges – Front-back Ambiguity
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ADoA Challenges – Unknown Tilting

Heydariaan, Dabirian & Gnawali - University of Houston 37

6 cases for tags inside the room in a 4-anchor setting.
We run 6 optimizations and choose the answer with the least residual error.



Performance of ADoA-based Algorithm
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CDF of localization error, simulated for different noise levels. 
Sub-meter accuracy for noise level below 5°

CDF of localization error, comparing AnguLoc with 
CTDoA in 2 experiments
Static with 3000 points: 44.33% improvement
Mobile with 200 points: 21.46% improvement
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Conclusions and Discussion
• Scalability
• Anchors: Up to 5 nodes. We can make multiple groups of concurrent nodes
• Tags: Unlimited

• Efficiency: At least 4 times faster than than sequential AoA
• Accuracy (compared to CTDoA)
• 44.33% improvement for static nodes
• 21.46% improvement for mobile nodes

• Limitations
• Larger errors on the sides of dipole antennas
• Larger errors in longer distances (lower SNR)

39Contact: milad@cs.uh.edu Heydariaan, Dabirian & Gnawali - University of Houston
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Backup Slides
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Benefits of UWB Radios

• Accurate (10 cm)
• Long range (290 m)
• Low power consumption
• Potential for use in indoor and outdoor applications
• 3D localization
• Construction zone safety
• Mars exploration
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UWB Use Cases
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https://www.firaconsortium.org/discover/use-cases
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Localization Technologies

43https://www.decawave.com/technology1/ Heydariaan, Dabirian & Gnawali - University of Houston

https://www.decawave.com/technology1/


ALOHA and TDMA in UWB-based Localization

• ALOHA
4 tags up to 4 packets per second each (total of 16 per second)

• TDMA
8 tags with 10 packets per second each (total of 80 per second)
7 anchors with total of 12 packets per second
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Concurrency Window and Clock Drift
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Longer response delay moves the responder peak due to 

larger clock skew.

23 ms additional delay causes clock skew of 40 ns.

Response Delay = 800 μs 

First path

For R1

First path

For R2

Response Delay = 23800 μs 

First path

For R1

First path

For R2

Δt < 1016 ns

Concurrency window. The time window for 

multiple responses to arrive concurrently.

For DW1000, theoretically 1016 ns.

Large clock skew can break concurrency
Heydariaan, Dabirian & Gnawali - University of Houston



Time-based AoA Estimation Using DW1000

• Path difference: ! = # × sin (
• Goal: Precision of 5°
• With one radio using CIR
• Resolution of 1001.6 !/ or 0.30048 3
• Antenna sparation: # = 4.54467

89: ;° = 3.497 3
• With two radios using ToA
• Resolution of 15.6 !/ or 0.00469 3 ->  # = 4.446>?

89: ;° = 0.053 3
• Precision of 333.3 !/ or 0.1 3 ->  # = 4.@

89: ;° = 1.147 3
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Response Position Modulation
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Concurrent responses separated by 128 ns

Initiator Ri

Request

Response i
!"# + !%

&'#

&"#

• &"# = &'# + !"# + !%
• !% = 128× - − 1
• - = /012 -1
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Search and Subtract (SS) Algorithm

1. Divide CIR into multiple chunks of 128 ns

2. Upsample each chunk using FFT with upsampling factor of L=30

3. Normalize upsampled CIR chunk

4. Cross-correlate each chunk with a signal template and output the 

index with maximum correlation

5. Consider the index as a peak if value exceeds a noise threshold of 

η = 12×&'()*+
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Concurrent AoA Algorithm
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Localization with Angle Difference of Arrival
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