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SonicDoor: A Person Identification System Based on Modeling of Shape,
Behavior and Walking Patterns

NACER KHALIL, University of Houston

OMPRAKASH GNAWALI, University of Houston

DRISS BENHADDOU, University of Houston

JASPAL SUBHLOK, University of Houston

Non-intrusive occupant identification enables numerous applications in Smart Buildings such as personalization of climate and lighting.
Current techniques do not scale beyond 20 people whereas commercial buildings have 100 or more people. This paper proposes a new
method to identify occupants by sensing their body shape, movement and walking patterns as they walk through a SonicDoor, a door
instrumented with three ultrasonic sensors. The proposed method infers contextual information such as paths and historical walks
through different doors of the building. Each SonicDoor is instrumented with ultrasonic ping sensors, one on top sensing height and
two on the sides of the door sensing width of the person walking through the door. SonicDoor detects a walking event and analyzes it
to infer whether the Walker is using a phone, holding a handbag, or wearing a backpack. It extracts a set of features from the walking
event and corrects them using a set of transformation functions to mitigate the bias. We deployed five SonicDoors in a real building
for two months and collected data consisting of over 9000 walking events spanning over 170 people. The proposed method identifies
100 occupants with an accuracy of 90.2%, which makes it suitable for commercial buildings.

CCS Concepts: • Computer systems organization → Special purpose systems; • Hardware → Sensor applications and
deployments;

Additional Key Words and Phrases: Wireless sensor networks, media access control, multi-channel, radio interference, time synchro-
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1 INTRODUCTION

The ability to identify a person in an indoor environment without requiring the person to actively interact with the
system or carry wearable or mobile devices will enable various building-related applications to support the users. In
fact, providing identity information of building occupants would enable many applications including accurate and
adaptive controls that would yield energy savings and increase comfort.

Achieving an accurate occupant identification is challenging because non-intrusiveness often leads to lower accuracy.
Recent developments have exploited weak biometrics to identify occupants non-intrusively. These solutions exploiting
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2 Khalil, N. et al

parameters such as height [Ranjan et al. 2013], weight, footstep vibration [Subbu and Thomas 2014] or gait inferred
from Wi-Fi RF signals [Jiang et al. 2012] do not accurately identify populations larger than 5-6 people making them
unsuitable for commercial buildings where hundreds of people interact with the system every day.

In this paper, we propose a method that is a significant improvement over our previous work [Hnat et al. 2012] which
accurately identifies up to 20 people by sensing height and width to infer the occupant’s shape and movement using
a door with Ultrasonic sensors. To achieve building-scale (100 or more people) identification, we design SonicDoor,
a door instrumented with ultrasonic sensors, and data analysis techniques. The system uses a set of optimizations
to the sensing, behavior detection, and corrections, and personalized Markov Chain Model for walking patterns in a
network of sonicDoors. Enhancements in sensing platform resulted in increased sampling rate which leads to more
accurate and consistent feature measurements with lower variances. Given this increase in accuracy, We propose a way
to detect and correct a set of activities (that we call behaviors) that users perform as they walk through doorways. These
behaviors, if not corrected, will bias the data and make identification more difficult to achieve. The behavior detection
helps reduce the variance which leads to higher accuracy since clusters are less likely to overlap. We deploy a network
of five SonicDoors where we learn about personalized users’ patterns and filter candidates based on similarity to a
set of clusters and also based on the frequent paths taken by the candidates. We model the participant’s path patterns
using personalized Markov Chain models for each participant which helped increase identification accuracy.

Compared to [Khalil et al. 2017], we added the following:

• Propose a new behavior namely detecting heels.
• Improve the identification model by taking into consideration the behavioral patterns that users perform and
deriving the probabilities associated with performing the behaviors.

• Improve the decision function to take into consideration the behavioral patterns in deciding which user it is.
• Re-evaluate the model taking into consideration the new improvements and new behavior.

This paper makes the following contributions:

(1) We perform a real-world large-scale deployment of five door frames for two months collecting 9000 walking
events spanning over 170 people. To our best knowledge, this is the largest deployment involving non-intrusive
person identification in buildings.

(2) We made a set of improvements to the Ultrasonic Sensing which enabled us to increase the sampling rate by a
factor of four from 35Hz to 132Hz.

(3) We propose a method to infer a set of common behaviors namely, using a phone, holding a handbag, wearing a
backpack, and wearing high heels as the person walks through the door. By inferring such behaviors, we make
the identification model more resilient to the observed variation by correcting the data from such behavioral bias.

(4) We propose a method that filters candidates based on the closest cluster candidates, filter using the network
topology and build a per-person (personalized) Markov Chain model for every occupant to further filter based
on the user’s path probability. We retreive the set of behaviors observed as the person walks through the door
and retreive the probability that the person performs such behavior.

(5) We also propose a "Decision score" that combines cluster closeness, the path probability and behavior probability.
We show that this method is key to scale the system to accurately identify 100 people.
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Table 1. Comparison of different non-intrusive people identification methods.

Paper Sensor Accuracy (%) population
Hnat et al. [Hnat et al. 2012] Ultrasonic 94 5
Pan et al. [Pan et al. 2015] Geophone 96 5
Zeng et al. [Zeng et al. 2016] Wi-Fi 93 4
Jenkins et al. [Jenkins and Ellis 2007] Pressure 80 15
Khalil et al. [Khalil et al. 2016] Ultrasonic 95 20

2 RELATEDWORK

The ability to identify and track people has captured interest from the research community in the last decades. Different
solutions have been proposed using different sensing technologies. Some sensing technologies require a user to carry a
device [Hnat et al. 2012; Ranjan et al. 2013; Subbu and Thomas 2014] while others rely on sensing strong biometrics such
as facial recognition [Lanitis et al. 1995], fingerprint [Hrechak and McHugh 1990], iris and hand geometry [Pan et al.
2013; Tisse et al. 2002]. Other technologies make use of weak biometrics such as height [Hnat et al. 2012; Srinivasan
et al. 2010] and weight [Jenkins and Ellis 2007].

2.1 Carried and Wearable Devices

Different proposed technologies have been utilized including RFID-based wearables [Ranjan et al. 2013], users’ smart-
phones [Subbu and Thomas 2014] and iBeacon technology [Hnat et al. 2012]. In RFID-based wearables, Ranjan et al.
propose an RF Doormat which is an RF sensing system that can identify and track users’ locations as they walk through
doorways. Smartphones have been used to identify, track, and localize users in buildings using WiFi and Bluetooth
access points. These systems identify occupants with high accuracy but suffer from missing a user if she does not carry
the device. It can also misidentify the user if the wearable is carried by a different person.

2.2 Strong Biometrics

Different systems have been proposed using facial, fingerprint, iris and hand geometry and achieved high accuracy
[Hrechak and McHugh 1990; Lanitis et al. 1995; Pan et al. 2013; Tisse et al. 2002] but they raise privacy concerns
and some require user’s active interaction with the system. Vision-based person identification is promising [Zhao
et al. 2003] but they target different sets of applications ranging from entertainment and virtual reality to security
and surveillance. Some vision-based identification methods rely on gait to identify occupants [Kale et al. 2004]. These
vision-based systems are energy intensive, invasive and cannot be easily deployed in environments such as buildings as
they are privacy infringing and places like nursing homes do not allow cameras to be deployed. Other systems such as
those using fingerprint, iris, hand and retina sensing [Hrechak and McHugh 1990; Pan et al. 2013; Tisse et al. 2002]
require a degree of engagement from the user to authenticate. This requirement is difficult to enforce and if users do
not authenticate, then the identification process fails.

2.3 Weak Biometrics

Methods that sense height, weight, footstep vibration and step force have been proposed to identify occupants [Elrod
and Shrader 2005; Hnat et al. 2012; Jenkins and Ellis 2007; Pan et al. 2015; Srinivasan et al. 2010]. These sensing systems
are non-intrusive and do not require effort from the occupant in the identification process. Among these systems,
footstep vibration based systems have been proposed to detect occupants identity [DeLoney 2008; Geiger et al. 2014;
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Fig. 1. Design of a SonicDoor doorframe.

Orr and Abowd 2000; Pan et al. 2015], some achieving 96% accuracy for a population of 4 to 5 people [Pan et al. 2015].
Height as a weak biometric has been proposed in the literature using ultrasonic sensing [Hnat et al. 2012; Srinivasan
et al. 2010]. Doorjamb uses height information, walking direction, and tracking information to identify users achieved a
high accuracy rate within a population of 2-4 people [Hnat et al. 2012]. Our previous system system leverages both
height and width identify up to 20 people [Khalil et al. 2016]. Weight can also be used to identify occupants [Jenkins and
Ellis 2007; Liau et al. 2008], sometimes achieving 80% accuracy for up to 15 people. RF signals have also been used to
identify occupants (e.g., [Zhang et al. 2016]). WiWho [Zeng et al. 2016] identifies occupants by observing the signature
of the RF signal reflection intensity on the human body. However, many of these systems fail to identify more than 4
with 90% and this quickly drops to 70% when the population is 6 people. Table 1 compares some of the work in this area.
These systems are non-intrusive, do not require user’s engagement to authenticate but many of them fail to identify
large populations which make them limited and difficult to use in large commercial buildings. Our current system is
able to identify up to 100 people with an accuracy of over 90%.

3 SYSTEM DESIGN

SonicDoor consists of a door frame instrumented with three ultrasonic sensors: One on top, UT, and two on the side,
UR (for the right side), and UL (for the left side), as illustrated in figure 1. Each ultrasonic sensor measures the distance
to the person passing by the door and generates a time series of data representing this distance. UT sensor generates
data about the height, while UR and UL sensors generate data about the width. The following subsections discuss each
component in detail and how the generated data is utilized to identify a person who passed by the SonicDoor.

3.1 System Overview

The identification system running SonicDoor is composed of the following components:

• Sensing and Calibration
• Event Recognition
• Event Data Correction
• Feature Extraction
• Filtering and Decision Making

Manuscript submitted to ACM
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Fig. 2. Architecture of SonicDoor system showing components and processes from sensing to identification.

These components are organized as shown in Figure 2. Our system is composed of a network of SonicDoors deployed
throughout a building. As the people walk through a SonicDoor, we first sense ultrasonic pings. We then decide if a
person is walking through the door. We capture the walking event with sensor-data error correction and interpolation
as described [Khalil et al. 2016]. We then analyze this data to detect any behavioral bias that may distort the data. If the
walking event presents symptoms of such behavior coming from the user, we correct the data to make it less sensitive
to these behavioral changes. Afterward, we extract a feature set from the walking event to map the walking event to
a feature space. Each walking event is converted to a single point in the feature space. Each occupant is associated
with one or multiple clusters. However, each cluster refers to one person. To determine the identity of the person,
we first retrieve the five closest clusters to the point mapped from the walking event. We note the identity of these
clusters and the distance of the clusters from our point. Afterward, we filter based on the network topology: We only
keep the candidates seen in a previous node whose edge leads to the current node. If such an edge does not exist, the
respective candidate is dropped from the list. Then we use the Markov Chain Model for every candidate to determine
the probability that this person has taken such an edge. We combine both the edge probability and cluster distance into
a decision score to rank the candidates and the identity of the person is determined by the highest decision score.

3.2 TestBed

Our testbed is composed of five SonicDoors deployed as shown in Figure 1 in an academic and research building in
the University of Houston campus. Each SonicDoor is a wooden door frame mounted with three ultrasonic sensors as
described in the previous section and illustrated in figure 1. These sensors are connected to an Arduino which runs
the sensing and walking event detection algorithms. This data is then passed to a Raspberry Pi to which a camera
is connected for ground truth collection. Each Raspberry PI is connected to the local area network. Once a walking
event is detected, it is cleaned and errors are corrected. The data is then sent to our server through a message queue
(RabbitMQ) that pushes the data to the database as well as to a local process that does the event behavior detection and
correction, feature extraction and storing the raw event as a set of features.

3.3 Sensing

Each SonicDoor is equipped with three ultrasonic sensors.

3.3.1 Improving sensing sampling time. In prior work [Khalil et al. 2016], the system was sampling at 35Hz. Increasing
the sampling rate is critical to provide sufficient data to enable using more accurate features which are used for
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Fig. 3. A possible scenario where crosstalk between UR and UL happens in the case of concurrent sampling leading to erroneous
width measurement. Crosstalk happens when distances (URB +U BL) ≤ 2U LP .

identification and also for behavior detection. First, we must minimize sampling time allocated to each sensor to increase
the sensor sampling rate. Each sensor is allocated enough time for its beam to get reflected back to it when it hits the
farthest barrier: the ground in the case of UT and the sides of the door in the case or UL and UR. However, we can limit
the time allocation for every sensor to allow every beam to travel just enough time to reach Walker regardless of his
position under the door. The sampling rate depends on the door testbed dimensions. The door has height and width
measure of respectively dh = 212cm and dw = 130cm.
Each sensor is allocated enough time for the beam to travel forward and get reflected back. Given the speed of sound of
v = 341m/s , we can compute the time required for the sound beam to traverse forward and backward. For example, the
time needed to sense height using UT is tut = theiдht =

2.dh
v . To operate all the sensors one at a time, the maximum

sampling rate is:

fsample =
1

tsample
=

v

2.dh + 4.dw
(Hz)

With three sensors, this sampling rate is too slow to extract sufficient data for more sophisticated features. We use two
techniques to speed up the sampling rate:
Truncating the sampling interval.When a person walks through the door, the beam reflects from the person and
arrives back at the sensor much sooner than without the person. Without the person, the beam travels all the way
to the bottom (in case of UT) or the other side (in case of UR or UL). We exploit this phenomenon by halving the
sampling interval without compromising sensing correctness. Thus, we can effectively operate each sensor at double
the sampling rate.

fsample =
v

dh + 2.dw
(Hz)

Concurrent sensing.We can further speed up sensing if we operate the sensors concurrently. However, operating UR
and UL concurrently causes sensor crosstalk. Even sampling height (UT) and width (UL+UR) in parallel cause crosstalk.
Through experiments, we found that operating UT and one of UL or UR avoids crosstalk if there is a person walking
through the door because that person functions as a shield between the beams from the sensors. This same person
cannot be considered a shield between UR and UL because of a case where an external barrier reflects the signal coming
from one sensor to another faster than the direct line as depicted in Figure 3. It is possible to operate these two sets of
sensors (UT, UL) and (UR) at two different sampling rates because of the difference in distance the beam needs to travel
for each case. To simplify the design and data processing, it is desirable to obtain the same number of samples from all
the sensors so we simply use the smaller sampling rate allowed for these two sets.
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3.4 Behavior Detection

We discuss how and why we detect three main activities: using a phone while walking, holding a handbag and wearing
a backpack. Though there are many more activities that a walker performs as she walks in a building, we believe that
these are some of the most common ones.

3.4.1 Rationale. A person’s movement and posture changes as a result of behaviors performed when walking.
Examples of behaviors are using a phone while walking, holding a handbag or holding a backpack. The person while
performing such activities would be measured differently by SonicDoor than when not performing those activities
leading to misidentification of the person. To make our system more robust to such behavioral biases, we detect such
behaviors and correct their effect on the data. The idea of correction is to find a transformation function such that
f (f eature) → corrected f eature

3.4.2 Detecting Person Using a Phone. Many people nowadays using their phones constantly, especially as they
walk. As the walkers use their phone, their posture, as well as walking pattern, changes. For instance, a person using
her phone will be more inclined forward and her head will be more leaned downward facing her phone compared to
when the person is walking without distractions.

Given, we can sample at 132Hz, we can measure the head lean. In Figure 4, we illustrate the height measurements of
two different walks by the same person: one where the person walks using her phone and another where the walker is
not using the phone. One can observe that the curve related to using the phone appears to have her curve decrease at a
more significant rate than the curve of when the user is not using her phone. To detect the phone, we compute the
following feature:

(1) Locate the highest point
(2) Select all the point within 5cm of the highest point
(3) Fit a line using least square algorithm
(4) Compute gradient of the line with respect to x-axis

We determine if a person is using a phone based on this feature.

3.4.3 Detecting Handbag. Many walkers carry a handbag on one hand. This behavior distorts the data. The main
sensors affected are the width sensors as the person would appear wider as a result. We detect this scenario by observing
that the person on one side appears wider than on the other. As the person walks through the door, the ultrasonic
sensor measures the distance to the hand and at other times, the distance to the waist. This is due to the fact that we
naturally slide our hands as we walk. This results in two groups of distance measurements per side. The distance (we
call body-hand) distance between these groups indicates how wide one’s hands are as she walks. This calculation is
done for both sides. We expect to see consistent body-hand distances from two sides. However, in the case of a handbag,
the body-hand distance differs from one side to the other and indicates the person is possibly carrying a handbag. To
identify the handbag, we propose the following feature for the walking:

• For each sensor UR, and UL, group the data distance measure into two groups based on the closeness between
points. A point belongs to a group A if it’s no farther than 2 cm.

• Calculate distance between two groups. This is referred to Body-hand (BH)distance. We calculate this distance
for sensor UR and UL.

• Compute the difference between BHU L and BHUR
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Fig. 4. Height readings (top of the head of the user) as a function of the sample number when using a phone and not using the
phone. The vertical red lines show the area within 5cm of the highest points for each curve. The straight black lines are least square
interpolation lines. We can observe a steeper descent for the person using a phone.

3.4.4 Detecting Backpack. Many users carry a backpack in everyday life. As the person walks through the door,
it would be detected by the height sensor as the height would decrease at the less steep rate than in the absence of a
backpack. In Figure 5, we illustrate two walks of the same person wearing a backpack and not wearing it. We observe
that the decrease in height is not as steep when wearing a backpack. In addition, the number of points following the
zone of highest points (when the head in under the door) is much larger.

To detect the backpack, we propose the following: First we identify the area with the highest points (head zone)
which are all the points within 5cm of the highest point. We consider the list of height readings following the head
zone. We note two features:

• Number of elements after the head zone as a ratio of the total number of elements
• Average rate of change between consecutive points after the head zone

Based on these two features, we train a Decision Tree Model to detect if a person is wearing a backpack.

3.4.5 Detecting Heels. Many people wear heels every day. Wearing heels affects the way a person walks. In fact, the
person tends to bounce more and the footstep length decreases. This change in gait affects the extracted feature and
introduces a bias that would lead to misidentification. To solve this issue, we propose an algorithm to detect whether a
person is wearing heels or not.

To detect if someone is wearing heels, we use the footstep length and bounce as an indicator. The main observation is
that people who wear heels will walk in smaller steps and bounce more than if they are not wearing heels. We observed
experimentally this is a better indicator than relying on the bounce. To detect heels, we propose the following: We
search for the highest and lowest point and measure the number of samples between the two. This is an indicator of the
step length. Given we know the sampling rate,

• Let sample be the amount of time between the two consecutive samples. This is usually predefined. In our case
the sampling rate is 132 Hz and sample is 7.5 ms

• Select point with largest height: Pmax
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Fig. 5. Height readings as a function of the time of a person wearing a backpack vs. not wearing a backpack.

• Select point with lowest height: Pmin

• Define Bounce = Pmax−Pmin
Pmax

• Define Footstep length= abs(Index (Pmax )−Index (Pmax ))∗sample
Pmax

3.5 Event Data Correction

Once we detect these behaviors, we need correct the walking event by removing such bias. For every behavior, we
measure its impact on the walking event by measuring the rate of change of every feature when a behavior is present
vs when it is not present. We then correct the walking event by transforming every feature based on the measured rate
of change.

3.6 Feature Extraction

We proposed the following features:

• Minimum, Maximum, Average Height
• Minimum, Maximum, Average Width
• Time under the Door: The temporal length of the walking event
• Bounce: This is defined as Maximum Height - Minimum Height
• Girth: This is the waist perimeter of a person [Khalil et al. 2016]

The most successful features were girth and time because they were the least affected by the way people walked through
the door. Therefore, finding a way to make our measured features resilient to the walkers’ behavior is key to scaling
our system. Our intuition is that by detecting certain behaviors and correcting the data, we can reduce the variance
further and especially in other features which would strengthen the identification model.

3.7 Filtering and Decision Making

Now that our walking event is corrected from errors as well as corrected from behavioral biases, we decide which
person walked through the door based on a number of criteria. We deployed a set of five doors throughout the building.
Each time a person walks through one of the doors, we learn more about the person and use that information later to
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Fig. 6. Network topology of the deployed SonicDoors.

narrow the number of candidate identifiers. Our model does not require training data but requires us to approximate
the number of people. Once we know the number of people, we cluster a subset of the data that is then used to create
the initial clusters.

3.7.1 Clustering. We use HDBSCAN for clustering [Campello et al. 2013]. In [Khalil et al. 2016], we have shown how
DBSCAN is appropriate for this problem but we found that it does not scale past 20 people. One of the main weaknesses
of DBSCAN is that it does not cope well with varying density of clusters and expects a more conform density across
different clusters. To solve this problem, HDBSCAN is based on DBSCAN but is able to cope with varying densities
among the clusters. In fact, we do expect varying densities of clusters because, in commercial buildings, some people
use the building more often than others.

HDBSCAN takes two parameters: the minimum number of samples per cluster and the maximum distance sparsity
in a cluster which refers to how far can objects be to belong to the same cluster. As the number of participants grows,
the feature space becomes denser and clusters become closer to each other. This pushes HDBSCAN to merge clusters
and that causes misidentification as two different people would be mapped to the same cluster. Therefore, finding the
distance sparsity parameter, "eps", is to be defined experimentally and should depend on the number of users as well as
the sparsity in height and width of the population.

3.7.2 Candidate filtering using Clustering. Given a formed set of clusters as discussed in Section 3.7.1, and a new
walking event, we first correct the walking event, detect behavior, extract features, and correct features from the
behavioural biases. This new data point needs to be identified with the correct user or cluster. Instead of relying on our
clustering algorithm to predict the correct cluster, we instead use it to filter a set of possible clusters.

We first compute the pairwise similarity between our new point and all points of our clustered dataset. For each pair
of points, we use the Euclidean Distance between the two points. We rank all the points relative to the new point by
distance. We then select the closest points that are no farther than 5cm. We chose 5cm experimentally because most of
the shape-related features do not vary by more than 5 cm by person as we will see later in Figure 11. If no cluster is
closer by 5 cm, then this is an indicator of a new person not seen by the system before. The identification stops at this
point. But for the general case, we chose 5 closest clusters and note the respective distances to our point we want to
identify.
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3.7.3 Candidate filtering based on SonicDoor Network Topology. After choosing the five closest candidates clusters,
we eliminate further these candidates but this time based on the topology. The idea behind eliminating based on the
topology is the following: As the person walks through the building, we gain more information about the Walker. If
we see a person at doorway D j at time t and we have a set of candidates Ci=c1, c2, .... Then, each of these candidates
must have been in a previous doorway at an earlier time whose edge leads to the doorway at time t. So eliminating by
topology means keeping only the candidates who were previously seen at a door frame di whose edge leads to our door.
So edge Di → D j exists in the topology. We note that this reasoning cannot apply to the start node as no previous door
exists.

The process of eliminating candidates is as follows:

• For each candidate ci in list of candidates at door dt
• Select previous door location of candidate ci dt−1 within the last 5 minutes
• if there is no edge from dt−1 to dt , eliminate ci from the list of candidates

3.7.4 Decision Making using Markov Chain Model. § We discuss how we learn the frequent paths of individual
users by building a Markov Chain Model for every individual. Some paths are taken more frequently by some walkers
rather than by others. As a result, our system needs to learn such path patterns and take them into consideration when
deciding which user it is.

At this stage, we have the following information: A set of possible candidates, each with the respective distance from
the walking event we are trying to identify. We also have an edge associated with every candidate.

Global Markov Chain Model. : One of the strategies is to build a global Markov Chain Model based on our door
deployment topology as shown in Figure 6. Every time a person walks from one door to another, the respective edge
frequency is incremented by one. This could help select the candidate based on the most frequently used edge. However,
the most frequently used path among the whole population does not tell us much about the path of the individual
candidates. In other words, the path taken depends on the person taking it. The main weakness of this approach is
that it ignores the fact that different people take different paths and the most frequent path differs from one person to
another.

Personalized Markov Chain Model. : Another approach is to build a Markov Chain Model for every person that will
keep track of the different paths taken and enable the system to evaluate the probability that person Pi took edge Ei
and select the candidate based on the highest probability of a person taking a specific path.

To build the personalized Markov Chain model, let’s consider the case of a new person seen for the first time by the
system (in this case a point farther than the closest clusters by a threshold distance and considered a new cluster). We
first initialize a Markov Chain based on the topology in Figure 6 and set every edge weight to 1 as illustrated in Figure
6. We give equal likelihood to every edge since we have no information about the new person. Once a new event is
assigned to such person, then we increment the edge in this person’s graph by one.

To compute the probability that a person has taken such edge, we calculate the probability Pi j of an edge (i → j)
with respect to the starting node i using Pi j =

Freqi j∑n
k=1 f r eqik

. We divide the frequency of edge (i→ j) by the sum of the
frequencies of all edges starting at node i. Since we know person X was seen before in Node I, then this captures the
probability person X appears in node j.
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3.7.5 Behavior-based Identification. Given we are able to detect a set of behaviors as the person walks through
the door, we noticed that some people are more likely to perform a behavior than others. For instance, women are
more likely to wear high heels than men. Even though our system cannot and is not able to detect the gender of the
candidates, the system is able to store a history of frequencies of various behaviors and derive probability associated
with performing such a behavior. This probability helps filter and select the most likely candidate and therefore identify
the person.

To perform this, we do the following. For each user, we associate a table of behaviors. For each behavior, we hold a
counter recording the number of times the person performs the behavior and the number of times when she does not
perform the behavior. Based on these two figures, we can infer the probability that a person may perform a behavior.
We define the probability that person X performs behavior B as:
PX ,B =

Freq(X ,B)
Freq(X ,B)+Freq(X , B)

This probability is used later in conjunction with other factors to identify the person. In addition, we initialize the
probability table with all one as opposed to zero because if the person walked for the first time through the door, then
the system would associate the probability PX ,B = 50% rather than 0 since the system has no idea whether one is more
likely than the other.

3.7.6 Combining Cluster Distance, Path Probability and Behavior Probability. After filtering by cluster and retrieving
the probability of every person taking his edge, we end up with three key pieces of information: the Euclidean distance
between our point and a candidate cluster, the probability that candidate X has taken such an edge and the probabilities
that person X did or not perform Behavior B. We have a probability associated with every behavior whether its
performed or not. These pieces of information are independent of each other and giving more weight to one may
influence the decision making further toward that one criterion as we repeat this operation which would lead to
increased error as we run our system. In addition, there are numerous cases where a person takes an unusual path but
walks in a very usual way and our clustering algorithm could point it with high likelihood or a person very distinct
behavior or set of behaviors while rushing through the doors. We should, therefore, consider both pieces of information.
We propose a decision score which combines the three pieces of information into a single score.

decisionscore =
PathProbability

Euclideandistance
∗
∏
bϵB

BehaviorProbabilityb

B refers is the set of Behaviors either performed or not whether depending on the user has performed them or not.
Compared to the formula we presented in [Khalil et al. 2017], this one takes into consideration the probability that a
person has performed a behavior or not. As we have mentioned the probability of a behavior can never be 0% as the
behavior frequency table is initiated with one. Therefore, the fact that a person never performed a behavior will not
lead to a decision score of zero.

4 SYSTEM EVALUATION

We describe the experimental setup and the results.

4.1 Deployment

We deploy five SonicDoors on the second floor (Figure 7c) of the Technology-2 building at the University of Houston for
two months. The black dots on the map in Figure 7c represent the sensors’ location. People were invited to participate
in the experiment by simply passing through the doors and encouraged to walk as naturally as possible. No instructions
Manuscript submitted to ACM
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(a) Hallway showing a de-
ployed SonicDoor.

(b) Top view of the door includ-
ing an Arduino, a Raspberry PI
and the wired ultrasonic sen-
sors.

(c) The location of the SonicDoors (marked
with black circles) in the Technology-2 Build-
ing at the University of Houston.

Fig. 7. Figure showing the SonicDoor testbed.

were given to the users. There was no direct communication with the participants with the exception of banners
inviting them to participate. The experimental protocol was approved by the University of Houston Committee for the
Protection of Human Subjects. Most of the participants were students, Faculty, and staff. Initially, 13,000 walks through
the door were collected during the deployment. We discovered that almost 4,000 events were false positives (when a
person does not walk through the door but the system thinks the person did). Fortunately, it was quite easy to spot
the false positives where we can observe that they have no more than two samples per event. Also, after annotating
the data, we found that over 215 participated in walking. We discarded from the dataset the people who participated
once or twice as our model cannot predict anything based on one occurrence of a person. In Figure 8, we illustrate the
distribution of Height and Width of all participants. We do not have accurate data about Gender but we observed that
there was a homogeneous gender mix among the participants.

4.2 Data Annotation and Ground Truth

Given that 9000 walking events need to be evaluated for ground truth, manual annotation would be a tedious, error-prone
and lengthy process. The process of annotating the data involves first associating an identifier with each personwhenever
she walks through the door, then evaluating all the events and grouping them along the 170 unique participants.

We opted for automated annotation using advances of computer vision in face recognition. We used Facenet [Schroff
et al. 2015] which provides an algorithm that consumes an image composed of a face and provides the end user with a
vector of 256 dimensions using Deep Learning. This vector is a mapping of the Face in the Euclidean space and similar
faces have a Euclidean distance of less than 1. The algorithm achieved an accuracy of over 99.63% in the Labeled Faces
in the Wild [Huang et al. 2007] dataset that is composed of 13,000 different faces. An implementation of Facenet is
provided using Openface [Amos et al. 2016].

As a person walks towards the door, we extract 30 to 100 images containing the face, depending on the door position
and how far was she initially. We collected a total of over 700,000 face images. Once, these images are collected, we
clustered them such that each cluster refers to one person making sure that similar images of the same person are no
farther than 1 Euclidean distance from another in the 256-dim feature space.

We convert every image to a 256-dim vector and note the ID of the walking event. We then search for the number of
clusters in the dataset using Gaussian Mixture Model (GMM) estimation using Expectation-Maximization (EM). The
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parameter we vary is the distance between different images which is initially set to 1. For each walking event, we look
for the percentage of the largest cluster of the set of captured images (30 to 100) and compute their average. We then
vary distance value parameter passed to the GMM model until we find local maxima.

For a sanity check, we manually checked 3-4 images in every cluster to make sure the images refer to the same
people. We checked 30 clusters. We did not observe any errors in the associations. The automatic association process is
robust and can be trusted. We believe this annotation process could scale to a larger deployment at the multi-building
level.

4.3 Annotation for Walking Event Evaluation

As explained in 4.2, we first receive the signal from the door that someone walked, then we look at the camera footage
and annotate the data. Though this works, it doesn’t enable us to evaluate the case where a person walks through the
door undetected by our system.

To be able to evaluate walk-through-the-door events, we rely on the camera footage to indicate whether a person
walked through the door or not. Using Openface [Amos et al. 2016], we extract all the face that appears in image taken
by the camera. We extract their position and track their location in the camera. If they go through the center of image
downwards (the camera is placed in the middle of the doorframe), then we conclude that someone walked through the
door at time t. We then verify whether or not our door detected a walk-through event.

This type of annotation is important because it enables us to accurately measure the walk-through false positives
(when someone walks through the door but the system is unable to detect this event). It is also important to measure
because when building the Markov Model model we rely on accurate walk-through detection and if such assumption
does not stand then we cannot retrieve or collect path probability information.

4.4 Evaluation Metrics

Our system uses a combination of clustering and filtering using Markov Chain Models. Even though we may refer to
purity as a metric in clustering, we note that we have each walking event annotated with an identifier and our goal is
to identify it. So we define accuracy as using the classical statistical definition:
accuracy = T P+T N

T P+F P+T N+FN .

4.5 Selecting Model Parameters

As the participant population grows, the clusters get closer to each other and the closer they get the more chance they
will get merged into one making it difficult to distinguish between the clusters. However, by reducing the cluster’s
radius, we can fit more in the feature space. However, by reducing the radius, we run the risk of creating many more
clusters and having many clusters per person which would in itself reduce accuracy. Ideally, we need to have one cluster
per person and no two people in the same cluster. We experiment with the variable eps which refer to the maximum
distance between a point and a cluster member in HBDSCAN. We found that a distance value eps=0.3 seemed to work
best with our dataset leading to high cluster purity but also approximately 1.25 clusters per person. In a different setting,
one must experiment with different values to find not only which one applies to the size of the population but also to
the specific population targeted.
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Fig. 8. Distribution of maximum height and width per walking pattern of the participants.
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Fig. 9. The probability of identity being correctly chosen as we vary the numbers of walks of a person.

4.6 System Performance as a Function of Number of Walks by a User

As noted, the more a user walks through the door, the higher the probability of being accurately identified. To evaluate
the hypothesis, we first cluster with the first 5 days of the dataset to create the initial model for the occupants. Then,
we compute the number of times the person walked through any of the doors. As a person walks through the door
network, we note if she was correctly identified or not and how many times was the person seen previously. We then
map the number of walks through the door with the frequency of times being correctly identified. Figure 9 plots the
probability that the system correctly identifying a person given the number of times it has seen her in the past. The
more a person walks through the door, the higher the probability of being correctly identified which makes it useful for
corporate buildings where the population does not change often.
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Fig. 10. The probability of identity being correctly chosen as we vary the numbers of walks of a person.

4.7 Evaluating Behavior-based Identification on System Performance

Our data shows that certain people perform certain behavior more consistently and at a higher frequency than others
which makes this information potentially useful for occupant identification. To measure how much benefit the Behavior-
based identification contributes to the overall model, we perform the following experiment. We cluster the first 5 days
of the dataset to create the initial model for the occupants. Then, we note the behavior-related information for every
occupant where we note the probability that this person performs a certain behavior and note whether she was correctly
or wrongly identified. For instance, if a person walks through the door, we first look at the behaviors performed, the
probability that this person performs such a behavior and whether he was correctly identified. We group these by
behavior and percentiles. So we have a set of corrent and incorrect identification for every behavior and for every
behavior probability. The goal is to measure what is the probability of correct identification as we vary the behavior
probability and see if higher behavior probability leads to higher identification probability.

In Figure 10, we plot the probability of performing a behavior and its effect on correctly identifying the user. Each line
refers to a behavior namely wearing heels, using phone, wearing a backpack and carrying a handbag. We observe that
as the probability of all behaviors increases, accuracy of identification increases. However, it seems that most of them
tend to converge around 50-60% correct identification probability. Therefore, though there is a benefit in using such a
method, its overall contribution will tend to converge as we collect more accurate behavior probability information.

4.8 Evaluating Walking Event Detection

Relying on the door to trigger the walking event does not evaluate the system’s ability in accurately detecting the
walking event. In fact, there may be cases where a person walks through the door undetected and the system would fail
to recognize the walk-through and therefore not identify this walker. We evaluate the performance of walk-through
detection by using the annotation as described in 4.3. As we have annotated by relying on the camera to point to a
walkthrough at time t, we check if the door detected a person at time t. Therefore, we use all the walking events.

We note that the number of walking events is 9000 when the number of walks detected by the camera is 9134. This
shows that a few walking events are undetected by the system. Table 2 shows the accuracy with which the system can
detect the events corresponding to walks through the door performance. The walk-through events are very accurately
Manuscript submitted to ACM
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Table 2. Walk-through detection performance for each of the five doors deployed

Door Accuracy
1 99.1%
2 98.4%
3 99.3%
4 97.7%
5 98.4%

Table 3. Accuracy by clustering using different features.

Feature Accuracy
Detecting Phone 89.1%
Detecting Handbag 90.1%
Detecting Backpack 84.6%
Detecting Heels 87.1%

detected. However, we note that many of the cases involved in missed detection have to do with groups of people
walking through the door close to each other. The system in some of these cases thinks it’s only one person with an
unconventional shape. This may be solved by comparing the girth’s shape to a more standard oval one and therefore
find the delimiting line between the two.

4.9 Accuracy of Behavior Detection

We arbitrarily select 300 walking events from our dataset. This smaller dataset has walking events belonging to 40
people each with walking events varying between from 4 to 20. For each of these events, we manually annotate it by
watching the video footage at the time of the event and look for the following:

• Is Walker using her phone?
• Is Walker holding a handbag?
• Is Walker holding a backpack?
• Is Walker wearing heels?

We divide the dataset into training and testing set. We train three different models (all three based on Decision Trees
Models), one for each behavioral detector: detecting phones, handbags, backpacks and heels. The training set is composed
of 1/3 of the data and the rest is used for testing. For each trained model, we evaluate its performance using the rest of
the data. Table 3 shows the accuracy of each of the trained models.

4.10 Building Behavior Correction Models

In order to accurately identify occupants, we need to measure features that are consistent for the same people but differ
across different people. Many of these features are affected by these behaviors but if detected, the walking event can be
corrected. Given we can accurately identify the behaviors as shown in Table 3, we need to correct the walking event.
To do so, we find a transformation function for every feature
f : f eaturesi → correctedFeaturei .

For every feature, we build a Linear Regression that corrects the feature. We use the dataset composed of 300 walking
events each with annotated behaviors as described in Section 4.9. For every behavior, we group the walking events into
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Table 4. The intercept α and slope β for every feature with respect to each behavior measured.

Detect: Phone Backpack Handbag heels
β α β α β α β α

Mean Height 1.019 1.765 0.973 -1.28 1.005 -0.031 0.97 -0.451
Min Height 1.0345 0.72 1.452 0.742 0.992 0.752 0.989 -1.258
Max Height 1.025 1.523 1.009 0.873 0.991 1.023 0.93 1.45
Mean Width 1.001 0.023 0.987 1.173 0.965 0.458 1.001 0.45
Min Width 0.996 1.031 1.0145 1.02 0.969 2.346 1.003 0.248
Max Width 1.01 0.783 0.993 0.4 0.931 0.759 0.998 -1.091
Girth 1.016 -1.25 1.007 -0.563 0.874 -1.573 1.023 0.876
Bounce 1.029 -1.245 0.682 1.249 1.004 0.238 0.883 -1.245

two groups: those showing such behavior and those not showing them. We build a Linear Regression Model for every
feature and every behavior. Table 4 shows the estimated regression parameters namely the intercept α , and the slope β .
From the measured slopes, β , one can observe that some features significantly benefit from the model. For instance, the
feature Minimum Height with respect to the backpack is increase by a factor of 1.4. This table also shows how some of
these features are distorted by a person using a phone, holding a handbag or wearing a backpack.

4.11 Feature Variance with Behavior Detection and Correction

Feature Variance affects our models’ accuracy. When the features’ variance increases, clusters may start overlapping
and eventually HDBSCAN will start merging them. As a result, the clusters’ purity decreases and the identification
accuracy decreases.

As shown in Sections 4.9 and 4.10, transforming the walking pattern with the aim of removing the bias due to the
behaviors should help decrease feature variance and therefore increase the accuracy of the model. We evaluate the
effect of modeling Behavior Detection and Correction on the feature variance. We evaluate how the feature variance
changes as a result of behavior detection and correction. We selected 300 annotated walking events as used in Section
4.9. This dataset contains the walking events, the identifier of the person and whether or not the walker exhibited
any of the behaviors namely: using a phone, holding a handbag, wearing a backpack and wearing heels. We group
these walking events by person and for every person, we compute the variance with respect to every feature. We rerun
this operation but this time by first detecting if there is an event and if so we correct it according to the correction
model and then calculate the variance with respect to every feature. Figure 11 shows a comparison of the distribution
of variances across people for every feature. We conclude that behavior detection and correction does reduce variance
and will increase accuracy we see in section 4.12. We note that some points are outside the Boxplot and that is due
wrongly identifying the behavior which could happen.

Compared to the initial results in [Khalil et al. 2017], we noticed that there was a slight improvement when including
the heels detection algorithm. It appears that mean height, min height, and max height saw their variance decrease
further when including such a behavior.

4.12 Impact of Network Filtering And Behavior Detection and Correction

We evaluate the benefit of using the topology filtering and Markov Chain Path Frequency Filtering, alone, then we
augment the model with the behavior detection and correction, and finally, we augment the latter with Activity-based
Recognition. We select 10 different groups of sizes 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. We have 11 sets of 10
groups each. The group members were selected randomly without replacement. Each group had at least 1000 walking
Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

SonicDoor: A Person Identification System Based on Modeling of Shape, Behavior and Walking Patterns 19

mean
height

min
height

max
height

mean
width

min
width

max
width

0

1

2

3

4

5

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f 
fe

a
tu

re
 p

e
r 

p
e
rs

o
n
 (

cm
)

Without Behavior Correction

With Behavior Detection

Fig. 11. Comparison of the observed variance of different walks of a person across different people. For each set of boxplot, the right
boxplot shows the variance of features without behavior detection and correction and the left boxplots include the behavior detection
and correction which show a clear decrease in variance across different walks for the same person.

events with the exceptions of groups of sizes 5 which only had 600 walking events. For each group, we sort the data
chronologically. Then we take 1/4 of the sorted data and feed it to our clustering algorithm to create the initial clusters.
We then build the individual Markov Chain models from this initial data by parsing it chronologically and using the
clusters for identification. Then for each element in the remaining 3/4 of the data, we evaluate its accuracy with and
without behavior detection.We extract the features for the walking event and extract the five closest clusters as explained
in Section 3.7.2. For both cases, we retrieve the previous location of every candidate, eliminate a candidate based on
if the edge exists in the topology, compute the probability of such edge from the candidate’s Markov chain model
and select the candidate with the based on the decision score as shown [Khalil et al. 2017]. To include activity-based
identification, for every possible behavior, we note whether the user performed it or not. Then for every candidate,
we select the probability that the user performed the activity or not. These probabilities are then used in the update
decision score in 3.7.6. Figure 12 compares both methods. From Figure 12, we observe that using the topology and the
network information greatly benefits the model. However, we note that for the larger populations where the benefit is
more significant, the formed groups contain occupants with on average the highest number of walks compared to the
smaller groups. This happens because, in the smaller groups, we have a larger set to choose from the groups have more
participation frequencies. These methods outperform our previous method [Khalil et al. 2016] by a large margin.

5 DISCUSSIONS

Although the system achieved 90%-96% accuracy with 5 to 100 people, the accuracy degrades to 76% for 170 people. With
more than 100 people, the cluster density increases and schedule overlap among people increases resulting in lower
accuracy, however the performance is still better than the state of the art. With more doors, the accuracy likely would
have increases allowing larger number of possible paths taken by people. Adding more ultrasonic sensors to each door
could increase the accuracy but the benefits of additional sensors may be marginal because additional measurements
of physical shape of the person brings more nuanced sampling of the user’s body, not some fundamentally different
aspect of physical shape and movement of the person from what we already capture (height, width, time). Although we
explore the most common user behaviors in this paper, it may be possible to increase the accuracy by modeling more
user behaviors.
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Fig. 12. Accuracy of using the SonicDoor network topology filtering model for identification to the accuracy with and without
behavior detection and correction and comparison to previous work [Khalil et al. 2016].

Sonicdoor may complement other tracking systems such as cameras because they sense different things and therefore
the data are independent of each other. Given both methods achieve high accuracy, there are cases when one system
would fail when the other would succeed. For instance, if a person covers her face, the camera will fail to identify her
but Sonicdoor would successfully identify her. Also, if more than one person walks through the door at the same time,
sonicdoor would fail but the cameras would still detect the faces. There are cases where both systems would fail at once
but the probability of this happening is lower than the probability of either on failing.

Adding more sensors may improve the identification but the margin of improvement would not necessarily justify
the cost of adding one or more sensors per door. Since we are not adding a new degree of freedom, some of the data
coming from the new sensors will correlate with data coming from already existing sensors and the information gain
may not be significant enough. But it is useful to experiment with more sensors to come to a final conclusion. We found
in a previous study [Khalil et al. 2016] that the height sensor only marginally improved the model which is why we did
not use it in the model. But in this paper, we used it to detect behaviors and understand their impact on the walker.

6 CONCLUSIONS

In this paper, we propose SonicDoor, a method that uses Ultrasonic Sensor-Instrumented door to identify occupants. Our
model uses a network of SonicDoors and builds a Markov Chain Model for every occupant and identifies the occupant
by first filtering based on the topology. Then, we identify by combining cluster distance and individual path likelihood.
With the new system design that allows fast sampling at 132 Hz, we infer three types of common user behaviors namely
using the phone, holding a handbag or wearing a backpack. We deployed a network of five SonicDoors in a commercial
building for two months and collected a total of over 9000 walking events by over 170 participants. To our knowledge,
this is the largest deployment involving non-intrusive person identification. The SonicDoor system can identify people
with an accuracy of 90.2% in a group of up to 100 people. This is five times greater than the state of the art which is
limited to up to 20 people.
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