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ABSTRACT
As cities ramp up the efforts to convert their aging light-
ing infrastructure to connected and energy-efficient Light-
Emitting Diodes (LEDs), they are confounded by the lack
of reliable information about their existing outdoor lighting
bases. In this paper, we propose a vehicle-mounted spectrom
etry-based approach to scalably audit the roadway lamp types
by driving across the city, thereby quickly and efficiently pro-
viding the basis for planning and executing LED conversion
projects. LambdaSeek , a mobile sensing system that can be
mounted on a vehicle, is developed to reliably capture the
Spectral Power Distributions (SPDs) of the light emitted
by the luminaires on the light poles by driving around the
city. The on-board illuminance sensor and the global po-
sitioning system receiver helps to localize the SPDs, which
are then classified into the corresponding lamp types us-
ing a k-Nearest Neighbor classification algorithm. Valida-
tion experiments across four field trials are presented: the
most commonly found High-Pressure Sodium, Mercury Va-
por, Metal Halide and LED lamps were classified correctly
with a recall rate of more than 95%.
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1. INTRODUCTION
Roadway lighting is a crucial infrastructure for cities. In

addition to helping us safely navigate after dark and reduce
crime, street lights add to the vibrancy and livability of ur-
ban spaces. Over the years, outdoor lighting has evolved
to be one of the most wide-spread and granular infrastruc-
ture in American cities. New York City (NYC) has about
262,000 streetlights and the entire United States (US) road-
way lighting consists of about 52.6 million light fixtures. Op-
erating such a large and complex infrastructure is expensive.
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Outdoor lighting consumes 52.8 TWh of energy annually,
enough energy to power six million homes for a year, cost-
ing cities about $10 billion annually [19] and can account
for up to 60 % of a city’s electricity bill for public ameni-
ties [18]. Additionally, lighting systems have a significant
carbon footprint [13].

Consequently, cities have been focusing on roadway light-
ing systems in the recent years. According to the 288-city
survey [16], published jointly by the U.S. Conference of May-
ors and Philips in 2014, 82% of the cities voted Light Emit-
ting Diodes (LEDs) to be the most promising technology for
reducing energy consumption and carbon emissions among
15 different technologies. Consequently, LEDs are the en-
ergy technology receiving the top priority from 29% of the
cities. Moreover, modern LED-based lighting systems of-
fer fine-grained intensity control and entail remote moni-
toring and control via wireless networking resulting in en-
ergy savings of more than 70% [1]. In January 2015, Presi-
dent Obama, in conjunction with the Department of Energy
(DoE), launched the Presidential Challenge for Advanced
Outdoor Lighting to encourage American cities to convert
their conventional outdoor lighting systems to LEDs [19].

A critical question that needs to be answered before, and
often during LED conversion projects, is: What are the lamp
types that are being operated on the various light poles in
the city? This question is the basis of planning a conver-
sion project. Knowledge of different lamp types is needed
to identify the requirements for the LED lighting system.
For example, High-Pressure Sodium (HPS) lamps, the most
commonly occurring urban lamp-type in the US, may re-
quire a different LED alternative from a Metal Halide (MH)
or Mercury Vapor (MV) lamps [12]. Once the conversion
project commences, progress can be tracked and reported to
the citizens and other stakeholders in a transparent manner
by monitoring the lamp types across the city. In this paper,
we propose a vehicle-mounted spectrometry-based approach
to solve the lamp-type identification problem at a city-wide
scale. The approach, which is illustrated in Fig. 1, consists of
LambdaSeek , a mobile sensing system for rapidly acquiring
the Spectral Power Distributions (SPDs) of the light poles
by driving across the city and then automatically classifying
the spectra into the corresponding lamp types.

Despite being critical to the grand challenge of LED con-
version, cities across the world are grasping with the problem
of acquiring reliable information about their lighting inven-
tory. Consider the recent request-for-information published
by the city of Chicago [3]. The city has requested a compre-
hensive inventory to be performed on about 20,000 lighting



3	  components:	  
- Sensors:	  spectrometer,	  luminance,	  GPS.	  

- A	  control	  algorithm:	  auto-‐locate	  the	  lamp	  based	  on	  the	  local	  maxima.	  
- A	  vehicle:	  mount	  the	  prototype	  for	  proper	  measurement.	  

Position along road 
La

m
p 

ty
pe

 

A: High-Pressure Sodium 
B: Light-Emitting Diode 
C: Meter-Halide Lamp 
D: Mercury-Vapor Lamp 

 
Data Pre-Processing 
and k-NN Classification 

Lamp-type spectral 
signatures 

A B 

C D 

Wavelength 

Co
un

ts
 

Co
un

ts
 

Wavelength 

Co
un

ts
 

Co
un

ts
 

Wavelength 

Wavelength 

Figure 1: LambdaSeek : A vehicle-mounted mobile sensing approach for identifying the lamp types across a city’s light poles.

fixtures in their parks as it transitions to LED-based smart
lighting. Manual audits of light poles are very expensive,
see [11] for details. Municipalities across the world urgently
need scalable means of solving the lamp-type audit problem
as they embark on large-scale LED conversion projects.

LambdaSeek consists of a spectrometer, an illuminance
meter, and a Global Positioning System (GPS) receiver,
which are managed by an embedded processor, and can be
mounted on a vehicle using magnets. The vehicle is driven
around the city at reasonable speeds to cover large areas rel-
atively quickly. The locations of the light poles are assumed
to be known apriori. The spectra collected at these loca-
tions are processed using a classification algorithm to infer
the lamp types. The premise of the algorithm is that differ-
ent lamp types have characteristic SPDs that are consistent
across product families. In summary, the main contribu-
tions of our paper are:

• A vehicle-mounted spectrometer-based system is presented
for rapid data acquisition by driving across the city. The
details of engineering the system to reliably capture SPDs
at speeds of up to 60 miles per hour (mph) are discussed.

• Four field experiments, consisting of HPS, MH, MV, and
LED lamp types, were conducted after validating the sys-
tem for accurate data acquisition.

• A classification algorithm, based on k-Nearest Neighbors
(k-NN), is presented to classify the spectra to its corre-
sponding lamp type.

The remainder of the paper is organized as follows. Sec. 2
presents background on LambdaSeek . Sec. 3 describes the
system description and our validation efforts. Sec. 4 presents
the validation and data collection experiments. Sec. 5 prese
nts the k-NN algorithm for classifying the lamp spectra.
Sec. 6 presents the results of the field trials. Sec. 7 discusses
related work. Sec. 8 discusses the directions for future work
and Sec. 9 presents our conclusions.

2. BACKGROUND
An SPD S is a mapping S : λ → R≥0, from a set λ

of discrete wavelengths to real-valued intensities. S(λ), for
λ ∈ λ denotes the intensity of wavelength λ in the light.

A spectrometer, which is illustrated in Fig. 2, is a sensor
that outputs the SPD of the incident light. An optical fiber
of the appropriate diameter is used to feed the light into the

spectrometer, which uses charged coupled devices, to gen-
erate the SPD. Each sample is generated by accumulating
photons over the integration time interval. The sampling
frequency dictates the rate of generating the sample.

Frequency 

In
te

ns
ity

 

Optical Diffuser  

Mirror 

Grating 

Fiber 

CCD 

Figure 2: Working principle of a spectrometer.

Fig. 1 shows the typical spectral signatures for the four
lamp types of interest in the paper: HPS, LED, MH, and
MV. These are the most commonly found lamp types in
cities across the world. The intensity is plotted as a function
of the wavelength. The four spectra are visibly distinct from
each other. The challenge, which is addressed in the further
sections, is to acquire the SPDs reliably and automatically
classify them.

The intensity of light is measured using illuminance, a
fundamental photometric quantity that measures the photo-
metric flux per unit area of a surface. Photometric flux is the
amount of energy emitted by the light source per unit time
over the visible frequencies of light. Illuminance is measured
in lux (lumen/m2) or footcandles (lumen/ft2) using an il-
luminance meter, which is more commonly known as a light
meter. Given the typical inter-pole distances in urban ar-
eas, an appropriately engineered vehicle-mounted light me-
ter will record intensity peaks as it drives under and/or near
the light poles.

3. SYSTEM DESCRIPTION
LambdaSeek , which is illustrated in Fig. 3, consists of the

following components: i) an Oceanoptics USB 2000+ spec-
trometer, ii) a Konica Minolta T10a illuminance meter, iii) a
Novatel FLEX-G2L-BPR-TTN GPS receiver equipped with
GPS-702-GG antenna, and iv) A Raspberry Pi (RPi) B+
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Figure 3: LambdaSeek: system description.

to manage the sensors. The RPi was interfaced to the sen-
sors using the USB. Data acquisition programs were written
to manage the sensors in a Debian Linux environment. We
describe the system parameters of the sensors and the im-
plementation details of the data collection routines below.

Oceanoptics USB 2000+ spectrometer : The diameter of
the optical fiber used by the spectrometer dictates the in-
tensity of the spectral measurements and thus is a critical
parameter for data collection at night. After experimenta-
tion, we chose the 1000 µm QP1000-2-UV-VIS fiber, with
the CC-3-UV-S cosine corrector for LambdaSeek .

After careful experimentation, the integration time was
set to 500 ms. Lower values result in spectra with very
low intensities leading to the loss of morphological features,
which are crucial for the classifier. Higher values may re-
sult in saturation and also cause the spectra to loose critical
features. The sampling rate, which cannot be less than the
integration time, was set to 1 Hz. Each sample is a vector of
intensities of length 2029 for wavelengths that are uniformly
distributed in the range of 200 - 1100 nm in accordance with
the product specifications [14].

Konica Minolta T10a Illuminance Meter : The communi-
cation protocol for the meter [8] was implemented for data
collection. Adaptive ranging was enabled to handle the vary-
ing intensities of outdoor lighting that is encountered in typ-
ical urban areas. The sampling rate was set to 1 Hz.

Novatel Flexpak GPS Receiver : This receiver enables sub-
meter accuracy using the Satellite-Based Augmentation Sys-
tem (SBAS). The RTKLib open source program package
[17] was modified for the receiver and the RPi platform: the
SBAS mode was enabled and the sbas.conf configuration
file was changed to increase the sampling rate to 10Hz.

Power management : A SMAKN step-down transformer
was used to convert the 12 V supply of a car’s cigarette
charger to 5V/3A output to power the RPi, which powers
the spectrometer and the Adafruit GPS. An internal battery
was used for the illuminance meter. The Novatel GPS re-
ceiver was powered directly from the car’s cigarette charger.

Mounting : Ten disc-shaped N48 neodymium magnets of
size 1/2 × 1/4 inches were riveted to metal bars at the bot-
tom side of the polycarbonate enclosure.

System validation
We designed experiments to test the following hypothesis:
Drive-by data collection using LambdaSeek at reasonable speeds
preserves the morphological features of the lamp spectra and
offers requisite spatial separation to distinguish the signals
from adjacent poles.

We selected a road segment of two identical LED lumi-
naires at the campus of Philips Lighting Research in Bri-
arcliff Manor, NY in the summer of 2015. The road has
two lanes and the light poles are located on one side of the
road. A thirty-point grid was laid on the road between the
two poles. The spectrometer was mounted on a six-foot-tall
cart to mimic the height of a typical car. Spectral measure-
ments were taken across the grid by aligning the cart at the
gird point. After the stationary measurements, LambdaSeek
was mounted on a sedan and driven on the road three times
at speeds ranging from 10 - 30 mph. Fig. 4 illustrates the
experiment setup.

Fig. 4b shows the stationary measurements of the LED
spectra at various points on the grid. These compare well
with the measurements made by LambdaSeek in the drive-
bys, as shown in Fig. 4d. Moreover, the spectra for the
two adjacent poles can be easily separated. Based on these
observations, we concluded that LambdaSeek can be used
to collect reliable data for lamp-type identification and pro-
ceeded for large-scale field trials.

4. FIELD TRIALS
Four field trials were conducted to test the reliability of

data acquisition and collect training and testing samples for
the lamp-type classifier. All the tests were conducted after
dark to minimize the effects of ambient lighting and ensured
that the spectra for all the four lamp types were consistently
captured at speeds of 20 - 60 mph.

The town of Rosendale in NY conducted an assessment
of streetlights in 2014 and has released this data to the pub-
lic [6]. LambdaSeek was tested in the town and the survey
data was used as the ground truth. The poles locations
(latitude/longitude pairs) were manually recorded by driv-
ing past them during day time because the town’s survey
included approximate human-readable locations, like inter-
sections. Drive-bys were conducted over two nights at speeds
of 20 - 40 mph to collect the spectra and illuminance peaks
for 100 light poles. The spectra were localized using the
illuminance peaks and assigned to the corresponding poles.

Pleasantville road, in Ossining NY, consists of about 70
poles that span all the four lamp types of interest. More-
over, the road cuts across both residential neighborhoods
and the town center. A drive-by test was conducted at ap-
proximately 35 mph to collect spectral and illuminance mea-
surements. The spectra were localized to the corresponding
poles using illuminance data. The ground truth for the lamp
types was established using visual inspection.

The Governor Malcolm Wilson Tappan Zee Bridge in NY
crosses the Hudson river and is part of a major thruway.
The bridge consists of 70 HPS lamps on both sides and is
ideal to test the LambdaSeek at high speeds. Data collection
drives were conducted at 50 - 60 mph on all the lanes of both
the east and west-bound sides of the bridge.

LambdaSeek was tested as part of a larger lighting audit on
the campus of Clemson University. The system was mounted
on a golf cart to cover pedestrian walkways and bylanes in
the university. A total of 956 spectra were collected to test
the scalability of data acquisition and the accuracy of the
classifier. All the spectra were labeled by hand.

5. LAMP-TYPE CLASSIFICATION USING
SPECTRUM DATA

In this section, we describe the classification algorithm for



(a) Cart-top measurements for reference. (b) Spectra measured atop the stationary cart.

(c) Daytime view of LambdaSeek mounted on a car. (d) Spectra collected by LambdaSeek after multiple drive-bys.

Figure 4: System validation: LambdaSeek preserves the morphology of lamp spectra.

labeling the spectra obtained in the aforementioned field tri-
als. The lamp-type classification problem is: Given a spec-
trum S(λ), assign it a class label l from L = {High Pressure
Sodium (HPS), Metal Halide (MH), Mercury Vapor (MV),
Light-Emitting Diodes (LED)}. The spectrum S(λ) is a vec-
tor of non-negative real-valued intensities collected by Lamb-
daSeek . The goal of classification is to use the morphology
of the spectra to assign the lamp type.

The similar spectral patterns for the same lamp type can
be captured using distance metrics:two spectra of the same
type will be “closer” to each other than the spectra of other
lamp types. Thus, an unlabeled spectrum can be classified
by looking at the labels of the nearest known spectra.

We applied this observation to build a k-NN classifier to
identify the lamp types. The k-NN classifier, a supervised
learning algorithm, works as follows. In the learning phase,
a representative sample of labeled spectra is used to build
a library {(S∗1 (λ), l1), (S∗2 (λ), l2), ... , (S∗M (λ), lM )}; S∗i (λ)
and li denote the spectrum and the class label of the ith

sample. Ideally, the sample must capture the diversity across
all the classes. In the testing phase, the class label l for the
spectrum S(λ) is assigned by

l = lĵ ,where ĵ = argmin
j∈1,2,...,M

(d(S(λ), S∗j (λ))), (1)

where d(, ., ) is the distance metric of choice. Next, we de-
scribe the implementation details of this idea.

Preprocessing : The spectra collected by the system need
to be pre-processed before learning and testing the classifier.
S(λ) was scaled such that the intensities lie in [0, 1]. All the
spectra collected by LambdaSeek show a peak around 900

nm. This peak is an artifact due to the heat emitted by
a human present in the vicinity of the spectrometer, both
during manual measurements and car-top collection. The
peak was removed from the spectra using a low-pass filter.

Learning the k-NN Classifier : A library L of 25 repre-
sentative samples of HPS, MH, MV, and LED was created.
The library spanned different types and brands of lighting
products. The Lamp Spectral Power Distribution Database
(LSPDD) [7] was used to pick the samples for the class
MH and MV. The validation experiment at Briarcliff Manor
was used for LED samples. The data collected during the
Rosendale field trial was used to extract HPS samples based
on the results of the street light assessment survey by the
officials of the town of Rosendale, NY [5, 6].

Testing the k-NN Classifier : There are several choices for
the distance metric d in Eq. 1. The Euclidean (L2), and
Manhattan (L1) distances, obtained by p = 1 and p = 2
respectively the in Eq. (2), were the initial choices.

dp(S̄(λ), S̄∗i (λ)) =
∑
λ

(|S̄(λ)− S̄∗i (λ))|p)1/p, (2)

for S̄∗i (λ) ∈ L. The cosine distance was also employed:

dc(S̄(λ), S̄∗i (λ)) = 1− S̄.S̄∗Ti
((S̄.S̄T )(S̄∗i .S̄

∗T
i ))1/2

, (3)

where the superscript T denotes the transpose of the spec-
trum vector and the subscript c denotes cosine distance.

The choice of the parameter k affects the ability of the
classifier to generalize across the library: k = 1 and k = 2
were tested, as discussed in the next section.



Table 1: Results for the Rosendale field trial.

HPS MV LED MH MIX
(89) (11) (0) (2) (0)

HPS 87 0 0 0 0
(87) (100%)
MV 2 11 0 0 0
(13) (84.6%)
LED 0 0 0 0 0
(0)
MH 0 0 0 0 0
(0)
MIX 0 0 0 0 0
(0)

Table 2: Results for the Tappan Zee Bridge field trial.

HPS MV LED MH MIX
(70) (0) (0) (0) (0)

HPS 70 0 0 0 0
(70) (100%)
MV 0 0 0 0 0
(0)
LED 0 0 0 0 0
(0)
MH 0 0 0 0 0
(0)
MIX 0 0 0 0 0
(0)

6. RESULTS
In this section, we present the results of the k-NN lamp-

type classifier on the data collected at the three field trials.
The performance was measured using the recall rate, which
is the fraction of the samples of a class classified correctly,
and k = 1. Lamp-type audits conducted by the cities are
often interested in ensuring high recall rates.

Tables 1 - 4 present the confusion matrices for the four
case studies presented in the Sec. 4. The first column rep-
resents the ground truth in terms of the number of the test
samples for each of the four classes. The first row repre-
sents the total number of samples that were classified into
the four lamp types. The (i, j)th, i, j ∈ 1, . . . , 6 entry shows
the number of samples of class label i that were classified as
class j by the k-NN classifier.

In addition to the four lamp types, we also present re-
sults for a fifth class: Mix. This class captures the spec-
tra that are combinations of two spectra of different lamp
types. Such samples are acquired by LambdaSeek at loca-
tions where two poles with different lamp types are located
close to each other and had to be manually labeled.

Figure 5: A mixed spectrum.

Fig. 5 is an ex-
ample of a mixed
spectrum that re-
sults from an HPS
and an LED lamp
situated close to
each other. Note
that our classifier
is currently not
trained to classify
such spectra as these
instances are very
rare in cities.

Across the four case studies, the classifier recalled more

Table 3: Results for the Pleasantville Road field trial.

HPS MV LED MH MIX
(26) (35) (7) (2) (0)

HPS 26 0 0 0 0
(26) (100%)
MV 0 35 0 0 0
(35) (100%)
LED 0 0 6 0 0
(6) (100%)
MH 0 0 0 2 0
(2) (100%)
MIX 0 0 1 0 0
(1) (0%)

Table 4: Results for the Clemson University field trial.

HPS MV LED MH MIX
(777) (2) (142) (34) (0)

HPS 777 2 2 1 0
(782) (99.4%)
MV 0 0 0 0 0
(0)
LED 0 0 130 0 0
(130) (100%)
MH 0 0 0 33 0
(33) (100%)
MIX 1 0 10 0 0
(11)

than 95% of the samples into the correct lamp type. The
large number of HPS samples in our test data reflects the
typical distribution of lamp types across American cities,
many of which have recently begun LED conversion. The
recall rate for MV lamps is slightly lower: 96% due to the rel-
atively low number of training samples in the library. HPS,
LED, and MH were classified with high recall rates across
the trials. The high number of HPS lamps results in diverse
spectra that may be confused for the other lamp types, but
this error rate was negligible in the Clemson University trial.
Finally, the Tappan Zee Bridge field trial established Lamb-
daSeek ’s ability to collect SPDs at speeds of up to 60 mph.

7. RELATED WORK
The system in [9, 10] entails using vehicle-mounted cam-

eras and GPS receivers to map the roadway lighting infras-
tructure. The authors develop a Kalman filtering approach
to recover from gaps in the GPS data to localize the light
poles. The system has been augmented with thermal imag-
ing to map heat-emitting infrastructure atop light poles, like
transformers. The authors have not extended their work to
lamp-type identification.

Measuring illuminance and other optical performance met-
rics across the city is an important problem for the cities,
as it enables the cities to periodically monitor the street
lights. Vehicle-mounted approaches to this problem include
[20, 15] and [2] presents a recent stationary approach. Light
intensity, on its own, can not be used for lamp-type identifi-
cation. LambdaSeek uses a spectrometer to capture spectral
signatures of lamp-types to enable city-wide lighting audits.

In [11], the authors propose a vehicle-mounted system to
measure illuminance and an anomaly detection algorithm
to mine faulty street lights from the data. The geo-spatial
patterns of light intensities are stored in so-called Imaps to
enable algorithms that detect dark patches that correspond



to faulty light poles. LambdaSeek , on the other hand, focuses
on collecting spectral data.

The work of [4] focuses on identifying the lamp types, and
is most closely related to our work. The authors propose
to use a library of spectra to identify lamp types across the
cities, but do not propose a scalable data acquisition sys-
tem. Authors allude to satellite images as a possible source
of spectral data. Despite being scalable, satellite imaging
is prone to occlusions from trees and resolution-related ac-
curacy issues. LambdaSeek , on the other hand, can provide
precise insights about each light pole in the city.

8. DIRECTIONS FOR FUTURE WORK
We plan to extend our work on LambdaSeek -based large-

scale lighting audits by augmenting the system with addi-
tional sensors and improving the data analytics pipeline.

System augmentation would involve expanding the set of
sensors on board LambdaSeek . The goal is to adapt the spec-
tral sensing rate to the speed of the vehicle. The Raspberry
Pi can be interfaced with the on-board diagnostic system of
the car to sense the vehicle speed and modify the sampling
rate accordingly.

Improved Data Analysis: The existing data analytics pipe
line suffers from the following shortcomings. The classifier
is not trained to identify instances of spectral mixing, which
occurs when two lamps of different types are located close to
each other. An optimization-based scheme will be developed
to handle this case. Spatial locality of lamp-types will also
be exploited. The analytics engine is also agnostic to ambi-
ent lighting, which is very common in busy urban areas like
Manhattan in NYC. Filtering algorithms will be developed
to reduce the noise in the measurements.

Wider Implications: LambdaSeek will be used to build
an end-to-end system to aid LED conversion projects. A
visualization module will be added to create heatmaps of
the light poles across the city and monitor the progress of
conversion and the status of the luminaires.

9. CONCLUSIONS
We presented an approach, based on vehicle-mounted spec-

troscopy, to solve the problem of identifying roadway light-
ing lamp-types across cities, and thereby aid the planning
and execution of LED conversion projects. The system was
validated against data collected by a stationary cart. A
k-NN classifier was developed using a library of 25 represen-
tative spectra. The cosine distance metric with k = 1 gave
recall rates of more than 95% for HPS, LED, MV and MH
lamp types across three field trials. The high degree of sepa-
rability of the distinct spectral signatures, along with the re-
liable and scalable data acquisition enabled by LambdaSeek ,
provides an easy-to-use efficient solution for the cities to
manage their lighting infrastructure.
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