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a  b  s  t  r  a  c  t

Until  now,  green  computing  research  has  largely  relied  on  few,  short-term  power  measurements  to
characterize  the  energy  use  of  enterprise  computing.  This  paper  brings  new  and  comprehensive  power
datasets  through  Powernet,  a hybrid  sensor  network  that  monitors  the  power  and  utilization  of  the  IT
systems  in  a large  academic  building.  Over  more  than  two  years,  we have  collected  power  data  from
250+individual  computing  devices  and  have  monitored  a subset  of  CPU  and  network  loads.  This  dense,
long-term  monitoring  allows  us to extrapolate  the  data  to a detailed  breakdown  of electricity  use  across
the building’s  computing  systems.

Our datasets  provide  an  opportunity  to  examine  data  analysis  and  methodology  techniques  used
in  green  computing  research.  We  show  that power  variability  both  between  similar  devices  and  over

time  for  a single  device  can  lead to  cost  or savings  estimates  that are  off  by  15–20%.  Extending  the
coverage  of  measured  devices  and  the  duration  (to  at least  one  month)  significantly  reduces  errors.
Lastly,  our  experiences  with  collecting  data  and  the  subsequent  analysis  lead  to  a better  understanding
of  how  one  should  go  about  power  characterization  studies.  We  provide  several  methodology  guide-
lines  for  the  green  computing  community.  The  data  from  the Powernet  deployment  can  be  found  at

aria
http://sing.stanford.edu/m

. Introduction

Common sense tells us that there are opportunities to reduce
he energy waste of computing systems. For example, many peo-
le leave their computers on overnight, even when they are not
eeded, or have power-hungry PCs for undemanding tasks such
s document-processing and web browsing. Observations like
hese have motivated recent research into green computing work
8,13,19].

Unfortunately, the data to support and evaluate new green
omputing solutions remains vastly anecdotal. Until now, power
haracterization studies have either collected data at the macro
cale of a whole building [9],  lumping all plug loads into one num-
er, or at the micro scale from a handful of computers and LCD
onitors [16]. Data at the macro scale is informative but difficult

o act upon – it does not provide visibility into the computing com-
onents that can be made more energy efficient. Power data at the
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 

Sustain. Comput.: Inform. Syst. (2013), http://dx.doi.org/10.1016/j.sus

icro scale is great at providing a detailed characterization of a sin-
le device but fail to show how the individual datapoint relates to
he full building energy use.
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The green computing research community can benefit from the
availability of more extensive power measurements. For example,
a single PC power measurement from 2004 [12] has been used
in papers as recent as 2010, citing it as a representative value.
The aforementioned paper gives the power draw of a 2002 Dell
2350 1.8 GHz computer as 60–85 W.  A 2009 paper [7] measured
two desktops (102 and 72 W,  respectively) and said their mea-
surements were consistent with prior data, citing [12]. Later the
same year, a characterization study [9] used 100 W per desktop
plus LCD for some of its calculations, citing [7].  In 2010, LiteGreen
[13] also referenced [7],  stating that the typical PC draws 80–100 W
when active. The paper goes on to measure one PC (95W active)
and uses it to calculate potential energy savings of their proposed
solution.

If we  were to continue on citation trails like the one above,
we risk using limited and possibly outdated data for new systems’
evaluation. In addition, enterprise environments are often hetero-
geneous and it is beneficial to have power measurements from a
larger selection of devices.

This paper helps fill the power data gap by characterizing
energy data at the individual– and the building–scale levels. Every
month, Stanford’s computer science department’s pays a $40,000
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

(330,000 kWh) electricity bill but there is no visibility into exactly
where this energy is going and how much of it is spent on
wasteful computing systems. This problem has much greater impli-
cations than a single department’s budget. When one considers

dx.doi.org/10.1016/j.suscom.2013.01.009
dx.doi.org/10.1016/j.suscom.2013.01.009
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he problem at scale, computing infrastructures add up to bil-
ions of dollars. According to the latest Department of Energy
Annual Energy Review”,1 computing in education and office build-
ngs consume 66 billion kilowatt-hours of electricity [2]. This is
% of all US electricity consumption and, as with data centers, is

ncreasing.
This paper presents Powernet, a multi-year study on the

omputing infrastructure in our department. Over two years,
e have measured plug loads from over 250 devices as well

s utilization rates of a subset of the computers and net-
orking equipment. The data from the deployment is available

t http://sing.stanford.edu/maria/powernet. The measurement
oints were selected carefully instead of being a uniform, random
ample. Since power does not necessarily follow a simple distri-
ution over device type, outliers may  be extremely important yet
ifficult to capture with a random sample.

Measuring over a long term allows us to quantify mea-
urement errors over shorter durations. Measuring a large and
iverse number of devices allows us to characterize the vari-
tion of power draw and utilization across and within device
ypes. We  augment our datasets with metadata including net-
ork device registrations and explicit equipment inventories.

he combination of power data, utilization statistics, and meta-
ata allows us to answer several open questions about green
omputing:

What is the contribution of computing systems to an enterprise’s
overall electricity consumption and waste, and how is this cost
distributed across different components of the computing infras-
tructure?
Recent green computing research makes power analyses based
on isolated research lab measurements: how do different
assumptions and methodology techniques hold in a larger enter-
prise setting?
We  heavily instrumented our infrastructure because we  did not
know what we  would find; now that we have an understanding
of the data, how would one design a measurement infrastructure
to achieve good accuracy with the least effort?

The answers to these questions form the fundamental contrib-
tions of this paper:

Detailed examination of where energy goes reveals that over 50%
of the electricity is spent on computing. PC’s account for 17% of the
bill despite the fact that their utilization is very low. Networking
equipment comes at 3.5% and shows no temporal changes despite
variations in traffic load.
Data analysis shows that estimating savings based on a few iso-
lated desktop measurements is prone to errors due to the wide
spread of PC power draws. Assuming that a day of power is rep-
resentative and using it to calculate yearly values can be off by as
much as 20%.
Our deployment and data studies expose the relative importance
of device coverage versus duration of deployment. Once a deploy-
ment is past the first month of data collection, one must prioritize
the ‘what to measure’ question over the time scale of the study.
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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The rest of this paper reviews the current state of green comput-
ng data before diving into the analysis of the Powernet datasets. It
uilds a picture of where energy is going in computing systems and
hat the utilization looks like. Next, the paper discusses a number

1 Released in October of 2011.
 PRESS
formatics and Systems xxx (2013) xxx–xxx

of data and methodology insights, and it closes with guidelines for
the design of future energy characterization studies.

2. Background

Up until recently, the green computing community has had to
rely on limited energy datasets, requiring researchers to make var-
ious explicit and implicit assumptions when analyzing the energy
behavior of computing systems.

This section discusses some of the different ways in which
related work has procured, used, and analyzed power data in the
context of evaluating systems’ research. In Section 6 we use the
Powernet datasets to study what errors we can expect when using
simplifying assumptions or limited data.

In measuring only a small number of devices and generalizing
claims, there is an implicit assumption that instances of the same
equipment model or size have the same power characteristics. For
example, in [16], researchers measure an individual desktop and
LCD monitor and determine the ratio of power use between the
two. Then, they collect aggregate data from a power strip that
has another desktop and LCD of the same size. Applying the pre-
computed ratio on the aggregate data leads to an estimate of the
power draw of the second set of devices. Even though both desktops
might have been Dells and both monitors 24-in. ones, we  do not
know how much variation there is between the seemingly identical
devices.

A modeling approach that takes system subcomponents into
consideration was  used in [20]. Instead of collecting measurement
with a meter, the authors use hardware components power mod-
els and software counters to calculate the power draw of a PC. This
methodology was able to predict the power use of one machine
based on a different one with 20% accuracy, indicating that even
more sophisticated techniques that take device subcomponents
into consideration will show error in estimation when assuming
that similar equipment has similar power or usage behavior.

Prior works [8,13,16] have often based their analyses on power
data collected from a small number of desktop measurements, 10
or fewer. In some cases, as shown in the introduction, evaluations
are based on one or two  values only. PCs are usually chosen based
on convenience, i.e. desktops in the lab where the research is done,
instead of using more deliberate samples.

Related work does not always indicate the duration over which
power data was  collected. In some cases [9,16] power draw is
shown over the course of a day or week, but the rest of the time
it is presented as a one-time, instantaneous measurement. Despite
the limited duration of measurements, they are used in calculations
of long-term benefits of energy-saving techniques. Thus, in Section
6 we explore the accuracy of using a day or month of data to make
full-year energy estimates.

Fig. 1
The Energy Star program [3] establishes standards for energy

efficient consumer products, including computing systems. As part
of the process of obtaining an Energy Star certification, manufac-
turers of PCs submit power data for each of their devices. The result
is an extensive database [6] of computer models and their power
draw.

The lack of substantial power datasets within our research com-
munity means that it is not uncommon for academic works [12,19]
to base their analyses on Energy Star data. These data, however,
are not representative of the real-world power characteristics of
machines.
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

The review of recent research reminds us that the more data
and the better understanding of methodology we have, the better
resulting insights and solutions will be. Powernet addresses both
of these needs.

dx.doi.org/10.1016/j.suscom.2013.01.009
http://sing.stanford.edu/maria/powernet
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ig. 1. The wireless power meter deployment spans three floors (shown) and one 

ower  meters. Most meters are under desks, near the floor. (For interpretation of r
rticle.)

. Data collection and deployment experiences

Before delving into the analysis of power data and energy
tudy methodology, this section presents the Powernet deploy-
ent. Powernet has been active for more than two  years,

ontinuously collecting power data from individual computing
evices.

.1. Original deployment

The primary requirement when designing the Powernet mea-
urement infrastructure was that power meters are able to sense
ndividual outlets at high sampling rates. This differs from many
esidential solutions that track whole-house energy consumption
nd report data every 10 or more minutes. Commercially-available
atts Up.NET meters were the first power sensors in the deploy-
ent, since they met  our needs and were easy to obtain [5].  These
eters transmit measurements over Ethernet, up to once a sec-

nd. Meters were placed in wiring closets, the basement server
oom, and spread-apart offices. While these meters were a use-
ul initial step in gathering power data, deploying and maintaining
hem proved to be difficult; problems surfaced even before the
eployment began.

The first practical issue was the lack of in-field upgradable
rmware. When a bug was discovered in the TCP stack, our only
ption was to pack up four large boxes of power meters and send
hem back, so that company staff could fix the proprietary code.
fter several weeks, the meters were back in our possession and

he deployment could begin.
It quickly became clear that few offices had an open Ethernet

ort for each power meter. Many offices required additional small
thernet switches and extra cables. The volunteer participants were
nhappy with the clutter under their desks, due to the size of the
eters. Each one weighs 2.5 lbs, with a thick, six-foot-long cord

eading to a 7 in. × 4 in. × 2 in. base. Despite the physically clunky
eployment experience, we were able to install 80 m.

In the Powernet building, each device must have a MAC  address
egistration to obtain an IP address. Each group within the building
as a unique VLAN, and each meter was statically registered to a
roup. The registrations could not be done all at once, since neigh-
oring offices may  correspond to different groups, and we could not
now in advance how many meters would be needed for a given
ffice. The network admins were burdened by the power meter
egistrations, and with this much manual configuration, mistakes
appened.

We received an email from a network admin stating that “more
han half of all DNS lookups emanating from [the three Engineering
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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uildings] to the campus servers” were coming from the power
eters. The solution for the lack of DNS caching was  to go back

o each meter, plug it into a laptop via USB, and hard-code the IP
ddress of the Powernet server.
 room (not shown). Black triangles represent data sinks, while blue dots represent
ces to color in this figure legend, the reader is referred to the web  version of this

In  addition to DNS lookups, the meters were also making ARP
requests once per second and overwhelming the network secu-
rity monitoring infrastructure. We received another email from the
IT staff, pointing out that ”[t]he 70 current meters now account
for 20% of total daily recorded flows” by the security system. To
work around this problem, the logging server was moved to a spe-
cial VLAN that was not monitored by the network admins. That
resulted in an IP address change, which meant yet another trip to
the individual meters to update the hard coded IP address of the
server.

Once the deployment was  in place, we observed a number of
meter software errors. From the 90 power meters, 8 completely
stopped working; they did not power up or did not send or dis-
play any data. Another set of 5–7 m began reporting incorrect data
at some point of the deployment; from the reported numbers we
guess it was an integer overflow issue but the closed firmware did
not allow us to verify this. The erroneous data was purged from
the analyzed data sets. There were also some meters that would
stop reporting data over the network until they were rebooted.
That again was  likely a software problem where the meters were
reverting to logging data locally instead of pushing it out via HTTP.
Of the original 90, only about 30 are still in operation; a number of
residents simply unplugged their meters.

To their credit, the wired meters generally reported accurate
data and work well for a dispersed deployment such as the wiring
closets. However, three key issues made the wired meters unsuit-
able for large-scale deployment: the lack of code accessibility and
remote firmware upgrade, the overhead of installing the meters
within the building network, and user dissatisfaction with clutter
and frequent maintenance. These experiences suggest that zero-
configuration networks would improve ease of deployment.

3.2. Wireless deployment

To scale the power-monitoring deployment, we designed cus-
tom wireless plug-level sensors. The sensing portion of these
meters includes current and voltage sensors, plus a digital power
meter chip that gives an instantaneous power reading [1].  The
communications portion includes a low-power processor, a radio
(2.4 GHz, 802.15.4-based), and an integrated antenna. The meter
software, built on TinyOS [18], includes sampling, routing [4] and
dissemination [15] capabilities. The top-level application reads
power draw every second and sends a data packet after buffer-
ing ten samples. The meters collect data via an ad-hoc multihop
network using the Collection Tree Protocol [4].  The wireless power
meters cost about $110 apiece.

The current board, similar to the ACme [16], has been exten-
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

sively tested and calibrated. We  use a WattsUp meter in line with
our power meters to calibrate them at different points between
0 and 300-W loads. We find that raw meter values exhibit lin-
ear behavior with a r-squared of 0.99 or above for all meters. Of

dx.doi.org/10.1016/j.suscom.2013.01.009
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Table 1
Powernet covers a variety of devices whose power measurements enable a charac-
terization of the energy consumption of the whole building. Some devices also have
CPU  utilization or network traffic monitors.

Device type Count

Desktop 75
Monitor 70
Laptop 28
Network switch 27
Printer 15
Server 36
Thin clients 12
Misc 3

Total 266

Table 2
Summary of collected data, organized by type of measurement.

Sensing type Num. datapoints

Power data 10 billion
CPU percent 400 million

T
W
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ourse, our calibration is limited to the accuracy of the WattsUp
eters. Complementary to our work, [14] have designed a calibra-

ion method that can achieve utility-grade accuracy.
The deployment of the first batch of 85 wireless meters took sev-

ral afternoons, compared to two weeks for the wired meters. The
enefits of the wireless deployment were noticed immediately, and
ome users even requested that we replace their wired meters with
ireless ones. The IT staff was not burdened by meter registrations,

nd the open nature of the software and hardware made modifica-
ions easy. The main meter limitation is transmission distance but
s the deployment expanded from a single floor to multiple ones we
dded two more base stations. The ability of the network to self-
rganize was key during this step, keeping efforts to a minimum
nd preventing any disruptions in data collection.

Instrumenting the entire Gates building was not feasible due to
he costs and practical challenges associated with monitoring over
000 devices. Yet, we wanted detailed-enough data to understand
here in the building energy is spent and wasted. Several consider-

tion went into deciding what to instrument. We  focused our efforts
n one of the two building wings, considering it representative of
oth wings in terms of types of devices and usage cases. Further, we
ere only interested in computing equipment, therefore we did not

nclude miscellaneous electric loads such as staplers, fridges, cof-
ee makers, or lights and HVAC. This is in contrast to the @Scale
eployment [10,14] which adopted a stratified sampling approach

n order to avoid a random sample overwhelmed by small, insignif-
cant loads. The main goal of Powernet ’s samples was  to measure a

ide variety of computing equipment to maximize the new infor-
ation we gain. We  did partially follow the stratified approach in

llocating meters to go to different device categories such as servers
nd networking equipment.

To date, we have not observed any hardware failures in the
00+m that have been active at different stages of the deployment.
he wireless network has proven a reliable way to collect the data,
dapting to varying environment condition as well as load. We  were
ble to seamlessly add additional base stations to improve connec-
ivity without any manual re-configuration of the network. Any
ost data was almost exclusively due to downtimes of the back-end
erver due to upgrades or power failures.

Powernet takes a unique perspective on green computing by
easuring not only device power draw but also device usage. We

eploy a number of software sensor that collect utilization statis-
ics in the form of CPU, active processes, and network traffic. This
tilization data is key for determining energy waste – the cases in
hich power is drawn but no useful work is done.

Tables 1 and 2 summarizes the different types of devices that our
ensing infrastructure measures as well as the total number of data-
oints for different sensing categories. The Powernet infrastructure
athers about 1GB of data every day.

. Energy consumption

This section presents the data collected via Powernet and tackles
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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he problem of extrapolating individual Powernet measurements
o the whole building. We  divide computing devices into four
lasses: LCD screens, PCs, networking equipment, and servers.
hen, we combine power data with network activity logs, device

able 3
e cross-correlate Powernet measurements with IT databases to extrapolate the energy 

Device type Measured Total Extrapolated via T

Switches 27 62 Network admin records 

Desktops/laptops 83 742 whois, MAC  registrations 

LCD  displays 70 750 Occupant survey 

Servers 32 500 Manual inspection 1
User processes 2 billion
Network traffic 10 million

registration databases, and a survey of building occupants to extend
our observation to an energy picture of the full IT system.

We find that computing systems draw between 210 and 259 kW,
depending on the time of day, or 47% to 58% of the building’s 445 kW
load. This aggregate power draw translates to 170,000 kW-h, or 50%
of the building’s monthly electricity usage.

Table 3 and Fig. 2 summarize our extrapolation methodology
and resulting breakdown. Ground truth is provided by aggregate
measurements from outside the building, logged every 15 min  by
campus services. The top curve in Fig. 2 shows one week of this
data.

4.1. Personal computers

Personal computers are the second largest contributor to the
energy consumption of computing systems, after servers. Accord-
ing to the department’s database of registered devices there are
about 1250 machines in the building that are actively observed on
the network. Of those, roughly 740 are PCs.

In order to extrapolate to the whole building we bin PCs in three
classes – laptops, low-end desktops, and high-end desktops. Low-
end PCs are those with average power of 80 W or less and include
machines such a Mac  Minis, Shuttle PCs, Dell Optiplex. Full-size
desktops like the Dell Precision are considered high-end machines.

Next, we take the 742 desktop MAC  addresses from the net-
work database and cross-referenced them with the university’s
whois service. The whois metadata includes node descriptions, such
as PC model and OS, provided upon network registration. Of the
742 nodes, 456 had description that allowed us to classify them as
laptops, low- or high-end desktops.
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

Table 4 shows the number of machines in each PC class; nodes
with available description are labeled as ‘observed’ and breakdown
of the other 286 assumes that the observed distribution is repre-
sentative of the building. While there is no good way of verifying

consumption of all computing systems in the building.

otal draw (kW) Uptime (h/day) Energy/mo. (kWh) Share (%)

15 24 11,000 3.5
80 24 61,000 17
48 ≈8 14,400 4
17 24 86,000 26

dx.doi.org/10.1016/j.suscom.2013.01.009
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ig. 2. Aggregate power draw for the entire Powernet building shows diurnal and w
iven  week of data is representative of the building, except for Monday, which was

his assumption, it is a straightforward way of filling the gaps in
nventory information.

Based on Powernet measurements, the median power draw for
aptops is 26 W,  for low-end machines – 63 W,  and for high-end

achines – 121 W.  This means that the three categories of machines
raw 2 kW,  4.4 kW,  and 72.1 kW respectively for a total of 78.5 kW

 day or 58,500 kW-h a month. The 742 personal computers in the
uilding account for about 17% of total electricity consumption of
he Gates building.

.2. Computer displays

While not often discussed in the green computing literature,
isplays are just as prevalent as the PCs they are attached to. The
rend of using larger size LCDs also means that their energy cost
s increasing. For example, it is not uncommon for a 30 in. LCD to
raw as much or more power than the average desktop.

To better understand the contribution of computer displays to
he overall cost of computing systems, we first study a single LCD.
hen we present the full Powernet dataset and extrapolate to the
hole building.

Fig. 3(a) shows an hour-long data trace during which we
djusted one 30 in. monitor’s brightness and desktop color scheme.
epending on the monitor brightness settings and the colors in the

mage displayed, the power draw varies by up to 35W (25%). Low-
ring the brightness by two settings (pressing the ‘–’ button twice)
educed the average power draw from 145 to 117 W,  a 19% reduc-
ion in consumption. Additionally, LCD power draw is affected by
he colors displayed. More energy aligns more liquid crystals in each
ixel, permitting more light to shine through and enabling them to
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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isplay brighter colors. Thus, a 30-in. monitor has maximum power
raw, measured at 145 W,  when the majority of the screen displays
hite elements. Switching to a dark background and color scheme

able 4
ersonal computers are binned into three categories, and university databases and
ctive network node counts allow us to extrapolate to the whole building.

Laptops Low-end High-end Total

PCs PCs
Observed 47 43 366 456
Estimated 29 27 230 286

Total 76 70 596 742
ay/weekend patterns. Computing systems account for 51% of the total 445 kW.  The
ersity holiday (February 15).

or viewing darker web  pages reduces the draw to 127 W.  Displaying
dark colors with the lower brightness setting reduces power draw
to 110W.

These findings prompted users participating in the Powernet
deployment to lower their monitor brightness, as well as change
their desktop backgrounds. Fig. 3(b) shows typical data from one
such user who  only modified desktop color schemes. (The moni-
tor brightness was already reduced.) The monitor’s power usage is
shown over a working week day once in April and then again in
May. We  observe over 10% reduction in energy usage. For a device
that is on about 40 h a week, 400 Wh are conserved.

In addition to the controlled measurements described above,
Powernet actively collects power data from about 70 LCDs of vari-
ous sizes. These individual sensing points allow us to quantify the
average power draw of different size LCDs. Taking one step fur-
ther to a whole-building extrapolation requires the distribution of
display sizes in the building. To obtain an estimate of this distri-
bution, we use an online survey asking occupants for the number,
size, and manufacturer of the computer screens they use. Table 5
presents data from the 169 responses reporting 225 monitors.
These responses account for 28% of the building’s occupants. The
table also shows the power consumption of different displays.

The cumulative power draw of the LCDs reported by users is
15 kW.  Scaling that to the whole building yields a power draw
of 52 kW or 12% of the building’s power demand during daytime.
Active duty cycling of screens reduces the energy footprint. Pow-
ernet data over time shows that displays are powered on 50–60 h
a week. Therefore, over one month, LCD screens consume about
14,000 kWh, or 4.2% of the monthly electricity budget.
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

4.3. Server machines

Powernet monitors 32 of the 500 servers in Gates Hall. Similar
to desktops, servers exhibit varied power profiles. For example, a

Table 5
A survey shows that majority of building occupants use mid-sized LCD displays. The
number of large (30 in.) monitors is increasing as equipment is upgraded.

Size Count Avg. power (W)

< 20 in. 42 30
20  in.–22 in. 40 45
23  in.–25 in. 84 63
26  in.–27 in. 15 80
29  in.–32 in. 44 120

dx.doi.org/10.1016/j.suscom.2013.01.009
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ig. 3. Brightness level and color scheme have a significant effect on monitor powe
n  the power draw. (a) Power draw of a 30 in. Dell display under different settings
ase,  a user changed to a dark color scheme.

tandard 1U rackmount can have a power draw anywhere between
5 and 275 W.  Unlike desktops, the server population is much more
omogeneous, e.g. 40 identical 1U machines in a single rack. There-

ore, we spread out our measurements to get maximum coverage,
ith meters measuring identical devices for verification purposes.

he average power draw we calculated from the Powernet mea-
urements is 233 W.  With about 500 servers, the aggregate draw is
17 kW – 26% of the total building energy consumption per month.
n the future, we hope extend the set of server measurement in
rder to have a more precise extrapolation.

.4. Networking equipment

Current networking hardware has constant power draw per
inecard of Ethernet ports, with some power variation due to CPU
oad and fan activity [17]. For similar switch models, the number
f linecards correlates strongly with power draw. The top two  lines
n Fig. 4 illustrate this point – even though the HP 5412zl switch
as only 24 additional active ports, its power draw is a third higher
hat of the 6-slot HP5406zl. The power story is different when com-
aring switches that differ significantly in their make or year of
roduction. The NEC switch is Fig. 4 has half the number of active
orts compared to the 12-slot HP, yet only a 5th of its power draw.
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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At the building level, the network backbone is provided by 2
ore switches located in the basement and 26 edge switches spread
cross the five floors. There are also a number of medium- and
mall-sized switches that have been deployed on as-needed basis.

ig. 4. Switch power consumption is constant, barring transient ups or downs.
ifferences between switches do exist, even if serving the same amount of traffic.
umption. A one-time change in LCD screen configurations can have a large impact
nergy consumption can be reduced by 10–28% without affecting usability. In this

We  account for all major switches and estimate the number of
smaller ones with the help IT staff. Table 6 summarizes the types of
networking equipment together with their power draw. The power
draw of wireless access points is folded into the switch data since
they are Ethernet-powered.

This observation together with the relatively small number and
homogeneity of devices, lends well to a whole-building calculation.
We  use Powernet ’s measurements and inventory from Table 6
to calculate the daily power draw of all networking equipment,
15.4 kW.  This translates to 11,500 kWh  per month or 3.5% of the
building’s total consumption.

4.5. Summary

This section presented empirical power data and a new
methodology for characterizing energy consumptions, using both
plug-level empirical measurements and device metadata, to create
a detailed picture of IT energy. We find that 50% of the building’s
energy goes to computing equipment: 26% goes to servers, 17% to
PCs, 4% to displays, and 3.5% to networking.

Our data confirms prior observations and intuition that PCs and
servers are major contributors to the energy bill of enterprise build-
ings [14]. The data also highlights that smaller parts of IT, such as
networks and LCD monitors, account for almost 8% of the overall
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

building’s electricity use. We  find that displays are responsible for
50% of the building’s diurnal power draw variation and are the only
computing component that exhibits such patterns. This confirms

Table 6
Summary of switch types, quantities, and and estimated individual power con-
sumptions. This inventory includes all major network switches and excludes small
per-room switches and hubs.

Type # Count Power draw (W)

HP 5406zl (6-slot) 20 325
HP 5412zl (12-slot) 8 500
HP  2724 2 100
Cisco Cat 6509 2 400
Cisco Cat 4000 2 600
Cisco Cat 3750G 2 160
Linksys 2 50
NEC (various) 5 100
Cisco (various) 5 100
Quanta (4-slot) 5 50
Misc (estimated) 100 10

Total major switches 53

dx.doi.org/10.1016/j.suscom.2013.01.009
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Table  7
CPU utilization of both student and administrative staff machines reveals that
processing resources are only lightly taxed. Data was  collected once a second for
11  months (students) and 1 month (staff).

Machine type Percentile CPU

5th 50th 95th

Student PCs
Dell Precision T3400 0% 1% 7%
Dell  Inspiron 530 1% 1% 8%
Dell  Precision T3400 0% 1% 13%
HP  Pavilion Elite m9250f 0% 0% 25%
Dell  Precision T3400 0% 4% 29%
High-end custom-built 0% 1% 57%
Dell  Optiplex 745 1% 9% 58%

Staff  PCs
Dell Dimension 9200 0% 0.75% 3%
Dell  Precision 690 0% 0.7% 4%
Dell  OptiPlex 760 0% 0% 5.45%
Dell  OptiPlex SX 280 0% 0.75% 5.5%
Dell  Dimension 9200 0% 1.5% 8%
Dell  OptiPlex 745 0% 1.5% 9%
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Table 8
The most popular workloads on administrative computing systems are general office
and web  application. These workloads imply that a laptop can be a used instead of
a  desktop.

Process % of time active

Acrobat Professional 1–4%
Firefox 0.5–4%
Internet Explorer 0.3–2%
MS  Excel 1–2%
Thunderbird 0.4–1.2%
MS  Word 0.2–0.8%
Outlook 0.4%
Dell  OptiPlex SX 280 0% 0% 10%
Dell  OptiPlex 760 0% 1.55% 17%

hat there is room for improvement not only in the IT infrastructure
ut also in the rest of the building.

. Utilization

While a breakdown of the electric bill is a useful first step toward
nding opportunities for savings, it is difficult to identify specific

ailures in energy efficiency. Energy data alone is not enough, it is
nly meaningful if paired with a characterization of systems’ uti-
ization. This section examines the workloads of computers and
etwork switches to determine what part of the energy is spent
ell and how much is wasted.

.1. Computers

Related work [7,20] suggests that desktop machines are rarely
urned off when not in use, and Powernet power measurements
ver a >1 year-long period support this claim. So far, green com-
uting research has focused on solving the problem of idle PCs.
ur utilization data sheds light on an equally wasteful problem

 power-hungry machine that even when active, barely tax their
esources.

Powernet collects data from both student and staff PCs and
ince the computing needs of the two groups are likely to differ,
e consider them separately. Table 7 shows the CPU utilization

f a number of desktops. Computer science students use more of
heir available processing resources, but even so, in many cases CPU
sage is under 30% for 95% of the time. The demand on adminis-
rative staff machines is even lower. Since most of the measured
omputers were left powered on at all times, the 50th-percentile
ata is not surprising: machines are often idling. What is surprising

s that even when PCs are in use, the level of usage is low. If desktops
ere power-proportional that would not be an issue, but the cur-

ent high baseline power draw means that the energy cost for a PC
hat is running at 5–6% of its capabilities is disproportionately high.
n one extreme case, measurements showed that the most power-
ungry staff desktop (quad-core Dell Dimensions 9200), drawing
ver 150 W,  has the lowest CPU utilization – 3.1% for 95% of the
ime.
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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Another way of investigating whether utilization matches the
ype of equipment we buy is to look at typical tasks users per-
orm. We  focus on staff computing because it is more representative
f an enterprise computing environment. Table 8 shows the most
Acrobat Reader 0.3%
Explorer 0.01–0.3%

common workloads on administrative machines, excluding Win-
dows services and virus checks. The percentage of active time is
calculated as the cumulative time over one month that the process
was running; the range of time captures the minimum and maxi-
mum  numbers over four computers. The workload data raises the
question of mismatched user needs and technology. There is no
reason why an entry level laptop or a Mac  Mini cannot perform the
same basic tasks (document editing, web  browsing, PDF viewing)
as a quad-core, 150-W desktop.

Characterizing the utilization of computers has revealed that
there is a lot more waste than idle machines alone. The base-
line power draw of desktops, combined with low use of system
resources, means that there are energy-saving opportunities even
when PCs are actively used. Powernet ’s PC utilization data suggests
that future green computing research should tackle all PCs, not just
idle ones.

5.2. Network equipment

Section 4 found that the networking infrastructure consumes
3.5% of the building’s electricity monthly electricity. This translates
to a cost of $15,000 a year just for networking. We  also noted that
switches consume a constant amount of power due to their hard-
ware design. If the network is operating near capacity, then the 3.5%
is energy spent well. Otherwise, if we find that the network operates
at, say, 10% capacity even at peak, it means energy is wasted.

This prompts the questions of how much traffic is flowing
through the 60 or so switches in the building, and whether smaller
or fewer switches could more efficiently meet bandwidth demands.

We begin by examining the traffic coming into one of the four
switches on the second floor of our building. This is an HP Procurve
switch with 96 1-gigabit active ports, consuming 500 W and serv-
ing 50+people. Fig. 5 shows the switch bandwidth over one week,
measured once per second. The demand never exceeded 200 Mbps
– an amount that could have been handled by a less power-hungry
edge switch and additional small switches (2–5 W each) in individ-
ual offices to meet port demand. To verify that this is not aberrant
behavior, Fig. 6 shows the cumulative distribution of traffic for 7
building switches. Note that the x-axis has a log scale. The number
of ports for different switches varies from 24 to 120 and the CDF
data was collected over 40–420-day periods.

Similarly to PCs, switches are highly underutilized. For the
equipment we measure, total network demand is lower than
1000 Mbps 100% of the time. Network over-provisioning is not a
new concept or observation; it provides benefits, including higher
throughput, lower loss, and lower jitter. But when the average
utilization is under one hundredth of one percent, several ques-
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

tions are worth considering. Is the amount of over-provisioning
unnecessarily large? How can we  take better advantage of the large
amount of bandwidth that today’s networks are ready to support?
Going forward, there are two  ways to address the issue: consolidate

dx.doi.org/10.1016/j.suscom.2013.01.009
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Prior work has implicitly assumed that instances of the
same equipment model or specification have the same power
ig. 5. Typical traffic patterns for one edge switches in the building. Network utiliz
00  W.

quipment and make better purchasing decisions in the future, or
ake use of the extra available bandwidth.
The story that network traffic tells is no different than that of

C utilization – systems are heavily over-provisioned, often with
o regard of expected workloads, leading to large energy wastes.
owernet ’s contribution is in bringing such utilization data to light
nd placing it in the context of green computing.

. Methodology insights

The previous two sections revealed details about the energy
onsumption in an office computing infrastructure. This section
xamines how the data collected via Powernet can help improve
oth the assumptions about power we make in research and the
ethodologies we apply to collect more data.

.1. How does the frequency of sampling affect what the data
eveal?

Prior work has rarely discussed in detail the sample interval at
hich power is measured. If the end goal is to calculate the amount

f energy used up over a day or week, the frequency is not of great
oncern. However, there are inherent tradeoffs associated with the
hoice interval. Less frequent sampling will result in less stress on
he measurement infrastructure and a more manageable dataset.
he longer the interval between consecutive samples, the larger
he risk of missing interesting events in-between.

An interesting example appeared during the Powernet deploy-
ent, illustrating the point above. Fig. 7 shows a one-hour timeline

f power draw for a Dell Studio XPS desktop. Each datapoint in
he graph is the average power over the last 1 min, for a total
f 60 measurements. Minute granularly is not atypical for many
ommercially available plug-level meters. The flatness of the line
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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ndicates that the computer was largely idle for the duration of
he data collection period. Furthermore, the value of approximately
00 W is a reasonable power draw for a full-sized desktop – nothing

s out of the ordinary.

ig. 6. CDF of traffic for seven switches over 6 months shows that switches are
perating well under capacity.
remain low. Power consumption for this switch remain constant, at approximately

Increasing the granularity of measurements paints a completely
different picture, as shown in Fig. 8. This is the same one-hour
period but power samples were recorded once a second, for a total
of 3600 measurements. The frequent jump in power draw is imme-
diately obvious and taking the FFT of the data confirms that the
30-W spike is regular with a period of 1 min.

Upon further investigation, we  were able to correlate the power
measurements with CPU spikes caused by the wireless card on the
desktop. A quick search online revealed the existence of a bug in
the Linux drivers for this specific piece of hardware. Turning off the
wireless card solved the periodic CPU/power spike.

Concurrent work [11] has found that 10-s intervals are a rea-
sonable choice, capturing power dynamics without overloading the
infrastructure. Our experiences showed that depending on the task,
different resolutions are desirable. For many practical uses – visual-
izing data, computing long-term estimates – even 5-min averages
are useful. Higher-resolution data, on the other hand, is needed for
correlating utilization metrics with power draw.

While different deployments will have varying resources
and goals, experiences with Powernet teach us that hav-
ing high-resolution data can be valuable not only in energy
characterization but also in monitoring for unexpected
behavior.

6.2. Devices of the same model or with the same specifications
have low variation in power draw.
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

Fig. 7. Five-min averages of power data do not show anything out of the ordinary
–  the PC is idle at about 95 W.

Fig. 8. Power data collected once a second reveals a misbehaving PC. Earlier, 5-min
averages hid the anomaly. In certain use cases it is beneficial to have high-resolution
data.

dx.doi.org/10.1016/j.suscom.2013.01.009
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Table  9
Average power draw of two  different devices with the same model (standard devi-
ation shown in parentheses). Two devices of the same model can differ by as much
as 43%. Networking equipment is more uniform than PCs.

Device #1 #2 % diff

Optiplex 760 60W (9) 34W (24) 43%
Optiplex SX280 68W (12) 56W (8) 18%
Optiplex GX620 71W (8) 63W (13) 11%
Precision T3400 117W (17) 110W (10) 6%
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HP  5400zl switch 467W (8) 463W (4) 0.01%

haracteristics, simply because of the lack of better data. Under
his assumption, measurements taken from one or two  devices
ave been used to reason about other, unmonitored pieces of
quipment. Unfortunately, such methodology can yield inaccurate
esults.

Powernet data reveals that some types of computing systems
an exhibit large variations even when comparing two  instances of
he same device model. Table 9 shows five example devices – 4 Dell
esktop models and 1 network switch. The two  Dell Optiplex 760
esktops have over 40% difference in their average power draw. In
ontrast, the two HP switches have almost identical power draw, as
ell as very low standard deviation over time. In some cases, even

hough the PCs appear to be the same on the surface, they might
ave been upgraded with custom components, causing a difference

n power draw. Furthermore, while two devices from the same type
ight have similar motherboards, power supplies, and processors,

hey can differ in in the user workloads they support, leading to
ifferent power profiles.

There is no single solution to error in estimating power, when
nly partial measurements are available. In the case of desktops, it
s not surprising that there is great variability, but putting concrete
umbers to it can help anticipate inaccuracies. Additionally, one
ould augment power measurements with other data, such as PC
tilization, to get more accurate understanding of how equipment

s used. In the cases when variability is low (e.g. switches), data
oints from only one or two devices can be treated as much more
eliable.

.3. Does sampling a few devices in a class provides an accurate
verage measurement?

Fig. 9, the Powernet curve, shows the wide distribution of desk-
op power. It is worth considering what errors can be expect if one
ere to sample only part of the PC population.
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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We  use ground truth data from 69 desktops to show how
he expected error of average power draw changes if based on
andom samples from the population. The average power draw

Fig. 9. Energy Star data is not representative of real-world PC power.
 PRESS
formatics and Systems xxx (2013) xxx–xxx 9

of the 69 desktops is 109 W.  We  generate 1,000,000 random
samples of size 5, 10, and 20, drawing from the lists of 69
machines. Fig. 11 shows the resulting histograms of estimated aver-
age power. Samples of only 5 desktops can have more than 16%
error in estimating the mean power draw. Increasing the sam-
ple size from 5 to 20 machines cuts the error by more than a
half.

The lesson is that when it comes to PCs, a small sample is
not desirable if trying to extrapolate to a large, heterogeneous
set. Recent work [10] correctly brings attention to the impor-
tance of complete device inventories in order to understand
how varied an environment is and targeting measurement points
accordingly.

6.4. Do short-term measurements accurately reflect long-term
power draw?

The Powernet datasets show that while the base load of com-
puting systems is consistently high, month-to-month variations do
exist. These changes result in slightly different energy use through-
out the month and year. For example, over one year the monthly
power draw average of one desktop varied from 183W (min) to
293 (max), with 216-W average over the whole year. Another PC
was consistently between 247 and 257 W.  One question to tackle
is ‘How does the duration of power measurements affect a yearly
cost estimate for some set of devices?’

Our analysis uses data from 16 desktops; each PC was  monitored
for one year, from May  2010 to April 2011. The cumulative average
power draw of the sixteen PCs is of 1524 W ($1600 for the whole
year, at $0.11 per kWh.) Examining the monthly average power
draw of each machine reveals that no single month is representa-
tive of the whole year. If we  were to take one day or week or month
data in the hopes of estimating the yearly electricity cost, we  should
expect to be off. But by how much?

Using a single day of data from the year-long trace allows us to
generate over 350 different estimates for the yearly cost. Similarly,
for one week or month of data, we  can compute multiple cost esti-
mates. We  can also repeat the process using sliding windows with
size of two  to 11 months. Fig. 12 summarizes the results. The x-axis
shows what duration of data was  used for the estimate. The y-axis
shows the average and maximum error of the estimate as percent of
the real energy cost. In a worst case scenario, measurements taken
for less than a week can have error of 15% or more. At the scale of a
building IT systems, such error in predicting costs can be thousands
of dollars. On the positive side, the analysis shows that collecting
data at the month timescale, as opposed to longer, could yield data
with an acceptable error. These results are in line with concurrent
work at Lawrence Berkeley National Labs [11] who found that two
months of data yields an acceptable tradeoff between deployment
effort and accuracy.

6.5. Is Energy Star data representative?

For a long time Energy Star was the only large openly avail-
able computer power dataset and while this is changing, it is
worth to discuss why Energy Star data should be used cau-
tiously. It is composed entirely of devices that have passed
minimum energy efficiency requirements. It does not reflect
the distribution of devices sold and data is self-reported. Fur-
thermore, Energy Star measurements and certification do not
consider PCs under load – they only deal with idle, sleep, and off
states.
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

Fig. 9 illustrates the divide between Energy Star data and the
real-world measurements collected by Powernet. The differences
are striking – close to 100% of the 4000+Energy Star desktops fall
below the 100-W cutoff. In our measurements, that is the median PC

dx.doi.org/10.1016/j.suscom.2013.01.009
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ig. 10. We find a difference not only in the desktop measurements of Energy Sta
ataset underestimates the true savings a desktop/laptop switch could have: (a) d
omputers in our building.

ower draw. The Energy Star dataset has the benefit of a lot more
ata points and real-world distributions might shift from build-

ng to building. Using Energy Star in lieu of real measurements is
ikely to underestimate energy costs in most contexts but can be
xtremely useful in advocating lower-power machines.

We  observed one more way in which the Energy Star datasets
iffer from the smaller, but real-world, Powernet ones. Fig. 10(a)
nd (b) show Energy Star and Powernet data respectively. In addi-
ion to the desktop measurements presented earlier, laptop power
ata is also plotted. The 50th-percentile difference between desk-
ops and laptops is much greater for the Powernet data – 83 W
ompared to 34. In an enterprise scenario where different hard-
are options are being weighed in, the Energy Star data set is likely

o de-emphasize the tremendous savings to be had from switching
way from desktops to using laptops instead.

Fig. 11.
Fig. 12

. Measuring computing power accurately

The prior section pointed out several data and methodology con-
iderations which, if not though out carefully, can lead to inaccurate
nalysis of energy use. The results from Powernet, however, rep-
esent only one point in time. As computing continues to evolve,
reen computing research will need to periodically re-measure
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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nergy consumption and waste. This raises the follow-up question:
Given limited time, money, and effort, how should one mea-
ure computing system energy consumption in order to minimize

ig. 11. Desktop diversity requires the measurement of a large sample of the pop-
lation. In this experiment, if only 5 desktops are used to estimate the power of all
9, then the expected error is over 16%.
 Powernet, but also in the laptop ones. This is significant because the Energy Star
r Energy Star-qualified computers as of March 2011 and (b) measurements from

error?’ This section presents methodology guidelines to aide future
green computing research.

7.1. Step 1: characterization

Not all device classes are equal: some require much more effort
to measure accurately than others. Table 9, for example, showed a
43% variation in the power draw of Optiplex 760 PCs but a 0.01%
variation in the power draw of HP 5400zl switches. An approxi-
mate ordering of the different devices in terms of variability places
desktops as the most diverse, followed by servers, laptops, LCD
monitors, and lastly, switches. Rather than distribute measurement
points uniformly, one should measure the high variation device
classes more densely. But device classes change quickly: Dell, for
example, no longer sells Optiplex 760 PCs. Being able to determine
which device classes have significant variation requires up-to-date,
current measurements.

To understand where to measure, one first needs to know
which device classes are high variation and which are not. This
can be done quickly, as a series of point measurements made
over a day. For example, suppose that an enterprise has a large
number of a new Dell PC. One can randomly select 10 of these
PCs and measure each of them booting. This will provide a
large dynamic range of power measurements within the class
as well as across the class. If the 10 show significant differ-
and analyzing the energy use of enterprise computing systems,
com.2013.01.009

ences, then they might need to be measured densely. One can
use the observed power draw distributions and statistically com-
pute what deployment of sensors will lead to the lowest observed
error.

Fig. 12. As the number of months of data increases, the standard deviation of error
in  estimates decreases. Even if only one month of data is used over 16 desktop, the
year approximation will be within 4% of the true value of $1600.

dx.doi.org/10.1016/j.suscom.2013.01.009
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Fig. 13. A week-long trace of power consumption and CPU ut

These point measurements should use simple digital readouts
e.g., Watt’s Up or Kill-A-Watt meters) which a person reads and
rites down. Depending on a wireless mesh or wired network
orts is probably more trouble than it’s worth (lack of connectivity,
LANs, etc.).

.2. Step 2: measurement

Once a short-term characterization study has provided guid-
nce on where to deploy sensors, they need to be deployed for a
ufficient duration. We  were able to use custom sensors and our
wn software to collect data over a wireless mesh, but this tech-
ology is not commonly available. Our experiences with Watt’s Up
eters – coordination with IT infrastructure, reconfiguration, fail-

re etc. – was that they are a poor choice for a very large, long-term
eployment, but are acceptable at smaller scale.

The results in Fig. 12 showed that energy consumption, espe-
ially for personal computing, changes significantly over time. One
hould measure for at least a week, and preferably for a month. After

 month, expected error, even for high-variation devices, drops to
%.

In addition, while using power data from one machine to
stimate another’s can be problematic, CPU load can some-
imes be used as a proxy for power on a single, calibrated

achine. Fig. 13 shows one week of power and CPU data
or a desktop. Visually, it is immediately noticeable that CPU
racks power very closely, with r2 = 0.996. Therefore, in the
ontext of desktops, one can collect a limited set of power
eter measurements followed by the use of software sen-

ors that report a feature (CPU) that is closely correlated with
ower.

Overall, given the choice between breadth (number of devices
easured) and depth (length of measurement), greater breadth

enerally leads to more accurate results. At the extremes, it is better
o gain a single point measurement of every device than measure
ne device for a year.

.3. Step 3: extrapolation

The final step is to take the set of biased measurements
nd extrapolate to whole system power. Our experiences with
owernet have highlighted the need for data beyond power
nd utilization measurements. If extrapolation is to be suc-
essful, one also needs metadata in the form of equipment
nventories and descriptions. Surprisingly, such metadata is not
early as complete and readily available as we  had hoped.
ather, we had to resort to indirect sources such as cross-
orrelating networked device registrations with active IPs on the
Please cite this article in press as: M.  Kazandjieva, et al., Measuring 
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etwork.
In the future, green computing researchers should encourage IT

ersonnel to keep updated and detailed records of what equipment
s added to a building.

[

on shows how well the two track each other, with r2 = 0.996.

8.  Conclusion

Characterizing the energy use of enterprise computing systems
is the first step toward identifying opportunities for improvement.
Extensive, empirical data allow researchers to better quantify the
problems they are tackling and the potential impact of their pro-
posed solutions. Powernet has provided such data and has shed
light on some of the assumptions that we make when faced with
the lack of solid measurements.

Despite our best attempts to cover as many computing systems
for as long as possible, the Powernet data remain but a single study.
While the exact breakdown of energy use and waste might shift
from building to building, the overarching methodology and data
analysis lessons remain. Going forward, green computing research
has not only a reference dataset to use but also a blueprint for how
to characterize enterprise building power given limited time and
resources.
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