
Accurately Initializing Real Time Clocks to Provide
Synchronized Time in Sensor Networks

Hessam Mohammadmoradi
University of Houston
hmoradi@cs.uh.edu

Omprakash Gnawali
University of Houston
gnawali@cs.uh.edu

Alex Szalay
Johns Hopkins University

szalay@jhu.edu

Abstract—Time synchronization is an essential service in
many sensor network applications. Several time synchronization
protocols have been proposed to synchronize the clocks on
sensor nodes. All the synchronization protocols bring energy
and complexity overhead to the network. There are many WSN
applications which timestamp their samples with second level
granularity. We claim real-time clocks can satisfy timing require-
ments of such applications. In this work, real time clocks are
utilized to build a time-synchronized sensor network. We propose
an accurate, robust, scalable and energy efficient approach to
synchronize sensor network by accurately initializing RTCs on
sensor nodes. Our experiments show that accurate initialization
of real time clocks allows us to build a time-synchronized sensor
network without any energy or complexity overhead of running
sophisticated online time synchronization protocol.

I. INTRODUCTION

Sensor networks have a diverse range of applications.
Environmental monitoring [1], home climate monitoring [2],
structural health monitoring [3], and sniper localization [4]
are examples of sensor network applications that have been
explored in the past.

To utilize the sensor readings in the context of the specific
application, oftentimes, we need to know the time at which the
reading was obtained. In some applications, the sensor data
needs to be analyzed across time to understand the temporal
trends. In some applications, the sensor data needs to be
analyzed across space. For example, in an ecology monitoring
application, we may need to not only know the sensor readings
from different places but also the ability to compare readings
from different times. These types of temporal and spatial
analyses require that the sensor readings are timestamped with
a globally consistent and accurate time.

Many sensor network applications (e.g., soil sensing in
agriculture; see table II for other examples) do not require
microsecond level time synchronization accuracy. In such
applications, high accuracy and precision time synchronization
protocols (e.g., RBS [5], FTSP [6], Glossy [7], PulseSync
[8]) may be an overkill. Our proposal is to accurately and
precisely program the Real Time Clocks(RTC) and use them
to provide timing to these applications instead of online time
synchronization protocols.

Utilizing RTCs to provide synchronized time to wireless
sensor network requires solving one main technical challenge.
The RTCs operate at a precision of one second. However,
we need to scalably synchronize the RTCs on the nodes as

accurately as possible, ideally with any-to-any pairwise error
of less than one ms. In this paper, we investigate several
approaches to accurately initialize the RTCs on the motes.
Our results indicate that RTCs can be initialized with less than
40 microseconds (200 microseconds in the worst case) offset
across the node pairs.

Our solution consists of a mechanism to accurately initialize
the network of real-time clocks that provide wall clock time
to the motes. Each mote in the network has an RTC with its
own independent power source as part of the node. During the
initialization of the mote (e.g., when it is programmed), we
synchronize the RTC to a reference time using a set of wired or
wireless synchronization techniques. The key technical insight
in our approach is using fine-grained measurements and delays
to achieve a sub-millisecond precision despite starting with the
clock with a one-second precision.

In this work, we make these contributions: (1) Design of
wired and wireless mechanisms to initialize the RTCs in a
sensor network and achieve pairwise errors in the order of 40
µs. (2) Comparison of the RTC initialization approaches using
extensive experiments on multiple hardware platforms.

II. RELATED WORK

The most challenging problem with RTCs is drift over time.
Recently researchers proposed a compact, lower-power and
lower-cost circuit which accurately (0.01 ppm) compensates
local clock’s drift over time [10]. In addition software ap-
proaches [11],[12] have been proposed which model clock
drifts and also estimate clock offset from reference time. While
these efforts help maintain timing accuracy over time, our
work focuses on initializing the clocks accurately in the first
place.

Researchers have also explored the idea of using real time
clocks in time synchronization. The HARMONIA [13] system
relies on an accurate real time clock for timekeeping at
a coarse granularity (one second) while the high-frequency
micro-controller clock is used to synchronize RTCs. In our
work, we focus on accurately initializing the RTCs.

RTCs are quite popular in embedded systems. We surveyed
the current status of RTC initialization techniques in the
embedded systems code available publicly. We surveyed 14
different open source software and libraries which initialize
RTCs and summarized the results in table I. During the
survey of those RTC initialization code, we found that none

TABLE I
SURVEY OF RTC INITIALIZATION CODE. SUMMERY OF [9]

of Projects Device Source of Time Gap between fetch and initialize Scalability Internal/External clk
2 Arduino From user on serial port Write immediately One at a time External

3 Arduino compile time Write immediately One at a time External

2 Arduino+Ethernet NTP Write immediately One at a time External

3 Desktop System Time Write immediately One at a time Internal

2 Desktop System Time Write immediately One at a time External

1 Desktop NTP Calculate offset time One at a time External

1 Raspberry Pi System Time Write immediately One at a time External

TABLE II
SAMPLE WSN APPLICATIONS UTILIZING LOW GRANULARITY

TIMESTAMPING.

Project Name Granularity Deployment Length
LifeUnderGround[14] 1 second 6 Months

VigilNet[15] 1 second Few Months

iMonnit[16] 1 Minute 1 Year

Engagement Analysis[17] 1 Minute 3 Months

Automated Irrigation [18] 1 Second 18 Months

of the studied approaches consider sub second initialization
error for initializing RTCs. They fetch the time and write
to RTC registers. Another takeaway from the survey is all
the mentioned approaches program one RTC at a time. In
scenarios with hundreds of nodes, we need to extend those
techniques.

Despite the popularity of RTCs in WSNs, a detailed analysis
of RTC’s initialization process and their applicability in build-
ing scalable time synchronized sensor networks have not been
investigated before. In our work, we accurately initialize RTCs
before deployment and thereby, to some extent, making it
unnecessary for the base station to send periodic time updates
to the network. The suggested approach, once deployed, does
not require network communication and hence can be robust
to harsh network environment or reboots and other disruptions.

III. SYSTEM DESIGN

Our design of RTC initialization system consists of (1)
the hardware architecture that integrates motes with RTCs
with (semi)independent power supply to provide synchronized
timing service for the sensor network and (2) a mechanism to
scalably and accurately initializate a set of RTCs on the nodes.

A. Timesync Architecture that utilizes RTCs

In this architecture, each mote is equipped with an RTC with
an independent or semi-independent power supply. Off-the-
shelf RTC packages such as the ChronoDot [19] provide these
features. It is also possible to integrate energy storage and
RTC chip on to a mote design with minimal effort. Thus, the
hardware requirement imposed by this architecture is modest
and already fulfilled by many common sensor platforms.

The second component of the architecture is the mechanism
that initializes the RTCs. The initialization system consists of

a device that keeps the reference time, a bus that connects the
reference time device with the nodes, and the commands to
program the RTC with the current time. The mechanism is
described in detail in the next section.

One concern with this approach is robustness: if the sensor
node reboots, it may lose track of time because there is no
time synchronization protocol during run time. Two main
safeguards exist to address this concern: (1) availability of
(semi)independent power supply allows the external RTC to
keep time accurately despite sensor node’s reboots, crashes,
and power outages and (2) leveraging extremely robust, sim-
ple, and accurate off-the-shelf RTCs. Another concern is drift
over time. As stated in related work section, currently there are
low drift off-the-shelf clocks (0.01 ppm) and also simple and
effective drift estimation algorithms to reduce drift impact. In
addition, our focus is designing timing service for applications
that require 1 second or coarser timestamping. Based on our
results, RTCs can be used to build reliable time source for
such applications.

Finally, the mote uses a simple protocol to query the RTC
to obtain the current time. Because the RTC directly provides
calendar time, the mote does not maintain mapping of local
to reference time. The query is made over I2C or other bus
that connects the MCU to the RTC on the device.

B. RTC Synchronization Through Accurate Initialization

The key idea in our approach is to convert the problem of
synchronizing a network of RTCs into a problem of initializing
the RTCs with accurate time and providing hardware resources
and simple design to maximize the probability of uninterrupted
timekeeping for rest of the deployment.

Traditionally, the RTCs have been programmed either by the
end users or at factories. These initialization rarely emphasize
high precision. The RTCs provide time at a granularity of one
second. Thus, a user may look at the watch and program the
RTCs. One may also write a program that obtains the current
UNIX time and program that time to the RTC. We investigated
different initialization methods and measured their accuracy
and sources of error.

Removing sub-second jitter while programming: Fetch-
ing the current time either by GPS or NTP and programming
the RTC with that time as quickly as possible could take
indeterminate time. As a result, the RTC may be programmed
with past time with variable offset. A solution is to introduce

appropriate wait between time fetch and RTC initialization
(using wait() function) or estimate the time when RTC
initialization is expected to execute and programming the RTC
with that future time instead of the current time. This requires
modeling the delays in the system, including jitters generated
by the wait() function.

Programming a set of RTCs at a time: The node with
the reference time should program as many RTCs as possible
at a time to minimize the initialization time and to minimize
the possible difference in time across the nodes. For a small
number of nodes, it is possible to build a wired bus to initialize
a set of RTCs at a time. For larger number of nodes, we use
one-hop wireless communication to provide the reference time
to the nodes and initialize all the nodes nearly simultaneously.

IV. IMPLEMENTATION

A. Real Time Clocks

Almost all embedded systems, including sensor networks
have internal RTC which can be utilized for time synchro-
nization purposes; but, internal RTCs are subject to high drift
and node reboots. We need to equip nodes with external RTCs
which have lower drift and more reliable power source. We
use ChronoDot [19] as an example of external RTCs in our
implementation experiments.

ChronoDot is an accurate real time clock module, based
on the DS3231 temperature compensated RTC (TCXO). In
normal usage scenario its battery estimated to work for 8 years.

Other RTC solutions may drift minutes per month, espe-
cially in extreme temperature ranges but the ChronoDot will
drift less than a minute per year. This makes the ChronoDot
well suited for time critical applications that cannot be regu-
larly synchronized to an external clock.

B. Wired Initialization of RTCs

We use Arduino, Raspberry Pi, and Laptop to initialize the
Chronodot over the wire.

1) Online Initialization via Arduino: Arduino is an open-
source computing platform based on a simple micro-controller
board, and a development environment for writing software
for the board. The Arduino device can program multiple
ChronoDots at a time through the I2C bus.

2) Online Initialization via Raspberyy Pi: Raspberry Pi
also supports I2C, to communicate with ChronoDots. Rasp-
berry Pi also has Ethernet port, thus it connects to the Internet
and obtains NTP (Network Time Protocol) [20] time. Thus,
Raspberry Pi is a suitable choice for online initialization of
ChronoDots.

Minimize initializing jitters with RealTime OS: In order
to provide predictable delays during time estimation and
programming the ChronoDot, we installed a real time op-
erating system (Patched Raspbian) on Raspberry Pi. In real
time OS, all the kernel code can be preempted. We changed
operating system scheduling policy from standard time sharing
(SCHEDOTHER) to first in first out one. With unpatched
Raspbian operating system, ChronoDot initialization faced

PC Arduino Raspberry
 Pi

Real Time
 Raspberry Pi

Wireless

Initialization Method

0

100

200

300

400

500

600

700

800

In
iti

al
iz

at
io

n
Er

ro
r (

us
)

Fig. 1. Online initialization error with different methods

hundreds micro-seconds of jitter (200 us) but real time patch
reduces the jitter to 40 microseconds.

3) Online Initialization via PC: In a lab environment, PC
or similar devices are normally used to program the motes.
In this method, we use the PC to initialize the ChronoDot
attached to the mote during mote programming. Although the
seamless programming and initialization the ChronoDot in one
shot is appealing, this method could introduce some jitters due
to the unpredictability of a general-purpose OS on the laptop
and due to the presence of an intermediate component (mote)
between the initiator, the PC, and the ChronoDot.

C. Wireless Initialization of RTCs

1) Wireless Online Initialization of RTCs: Wired initial-
ization does not scale to a large number of nodes. Wireless
initialization can initialize a large number of RTCs at the same
time. The key idea here is to attach RTCs to sensor nodes
and put nodes in transmission range of base station. The base
station sends the initialization command and reference time via
single message. Once each node receives the reference time, it
initializes its RTC. Note that this time configuration protocol
is expected to run just once during factory initialization
or staging lab before the deployment thereby avoiding any
communication overhead during deployment-time.

2) Wireless Offline Initialization of RTCs: In this method,
the motes first obtain the RTC time through I2C interface.
They then report this time to the base station. The base station
uses fine-grained instrumentation to record accurate reception
time at sub-millisecond precision. The base station then can
use multiple timestamps to create a regression model to obtain
sub-millisecond time on the mote. If the jitters on the I2C on
the mote RTC interface is small and the recording of reception
timestamps is accurate when the base station receives the RTC
time, then the overall error of this technique can be low.
We perform experiments to understand the impact of these
contributors to the overall accuracy of the system.

V. EVALUATION

1) Measurement approach: In this section, we summarize
the performance results from our experiments.

A. Initialization Accuracy

One of our goals is to accurately initialize the RTCs with the
various approaches to understand the most effective method
to initialize RTCs. We now describe our experiment setup to
study the initialization accuracy.

Synchronization
 Error (Total)

Fetch
 Ref. Time

Wait Till
 Transition

Send Over I2C

Synchronization Error and It's Sources

0

20

40

60

80

100

120

T
im

e
 (

u
s)

(a) RaspberryPi (Real Time Raspbian 4.1)

Synchronization
 Error (Total)

Fetch Ref.
 Time

Wait Till
 Transition

Send Over I2C

Synchronization Error and It's Sources

0

20

40

60

80

100

120

140

160

T
im

e
 (

u
s)

(b) Raspberry Pi (Raspbian 4.1)

Synchronization Error
 (Total)

Wait Till
 Transition

Send Over I2C

Synchronization Error and It's Sources

0

50

100

150

200

250

300

350

400

T
im

e
 (

u
s)

(c) Arduino

Fig. 2. Jitter Source Analysis During Online Initialization

Synchronization Error (Total) Send Over I2C

Synchronization Error and It's Sources

0

20

40

60

80

100

120

T
im

e
 (

u
s)

Fig. 3. Error with jitter-free fetching of reference time.

We programmed all the Chornodots and set their alarm
register to a specific time. We connected their alarm pin
(SQW) to logic analyzer and waited for the alarm to raise
the output pins. The time between when the pin from one
ChronoDot is raised and when the pin from the second
ChronoDot is raised is the synchronization error for that pair of
ChronoDots. Our goal is to measure time difference between
all those ChronoDots by measuring time difference between
the rising edge of each signal. We sampled data with 1 M (106)
samples per second with a multiple-channel logic analyzer and
measured time difference between rising edge of output signals
of Chronodots.

1) Measured Error: Figure 1 shows the histogram of
measured errors for the four methods of online initialization.
Initialization with PC has largest initialization error and real
time OS on Raspberry Pi has most accurate results.

2) Source of Error: Among all the techniques, the most
accurate approach is using Raspberry Pi booted with real
time OS. We measured a delay of about 40 microseconds in
initialization process. We can divide initialization process to:
Step 1: Fetching reference time (NTP time) Step 2: Delay till
transition from second t to second t+1 Step 3: Send reference
time to ChronoDot via I2C

Figure 2 shows delay and jitter values for the three steps.
To measure synchronization error, before starting of each step,
we raised a signal and immediately after finishing lowered
it back. Using logic analyzer, we measured the total time it
takes for each step to finish and from that we calculated jitter
values for each step. Large jitters will result in large errors in
initialization.

The main source of jitter is the wait() function. Other two
steps have less then 10 microseconds jitter. The problem with
wait() function is, we use OS-provided sleep functionality
which is based on CPU’s internal clocks and its accuracy is
depends to hardware architecture.

We also measured synchronization errors using general-
purpose operating system instead of a real time one. As seen
in figures (2a) and (2b), using real time operating system and
application improves accuracy by almost 200 %. We also did
the same analysis for Arduino and results are shown on figure
2c.

B. Error with jitter-free fetching of reference time

The major source of error was fetch time jitter. Figure 3
shows sources of error in the case of jitter-free fetch time.
Based on figure 3,the main source of initialization error is the
I2C jitter. The approach also illustrate the best case accuracy:
initiating RTC programming using GPIO prevents some errors
and we can achieve almost 10 microseconds synchronization
error among nodes.

C. Offline Wireless Initialization Performance

In this experiment a network of 10 bacon motes, each
equipped with unsynchronized ChronoDots, is deployed in
transmission range of a base station. Each mote, after a random
back off time, sends its local RTC time value to base station.
Using GPIO pins, we measured average time it takes for
motes to capture synchronized time from attached ChronoDot
via I2C interface and also time for transmitting message
to base station. The base station, then uses the technique
described as wireless offline initialization (Section IV-C2) to
keep track of mapping between RTC time on the individual
motes and the wall clock time at sub-ms precision. Figure 4
shows experiment’s results. We find that offline initialization
incurs less than 20 µs jitter. Thus, offline approach is more
deterministic compared to the online initialization techniques.

D. Scalability

The wired initialization approach has limited scalability but
the wireless approach can handle large sets of nodes. We
equipped 10 Bacon motes with ChronoDots. We configured
a base station with access to the reference time. The base

5.990
5.995
6.000
6.005
6.010
6.015
6.020
6.025
6.030

Capturing Time Transmitting Time5.000

5.005

5.010

5.015

5.020
Ti

m
e

(m
s)

Fig. 4. Offline Initialization Performance

1 2 4 5

Group Size
0

100

200

300

400

500

600

S
y
n
ch

ro
n
iz

a
ti

o
n
 E

rr
o
r

(u
s)

Fig. 5. Multiple Round Wireless Initialization

station periodically broadcasts synchronization messages to
the network. Each receiving mote initializes its own RTC
and sends an acknowledgment to the base station. The base
station continues to broadcast the initialization messages to the
network till it receives acknowledgment from all the nodes.
We emulate a real world situation in which not all the motes
receive the initialization messages in one round. We conducted
four sets of experiment and in each experiment we changed
the number of initialization rounds. On each round, a specific
number of nodes receive synchronization message and we call
them a group. As an example, whenever we have two rounds
of initialization, there are two groups, each with five nodes.

Figure 5 illustrates pairwise synchronization errors on dif-
ferent experiments. We learn from figure 5 that the number
of synchronization rounds have direct impact on synchroniza-
tion error. In other words, more rounds of synchronization
increases time difference between sensors but even in case of
10 rounds of synchronizations, error will not exceed a few
hundreds of microseconds.

The alternative approach, offline initialization, has even
better scaling characteristics. All the sensor motes can send
their local time to the base station and using just two records
per mote, base station can build a linear model for mapping
the mote RTC time and the reference time. Thus scaling of
this approach is limited only by the state on the base station.
Most often, the base station is assumed to have large memory
and computational resources.

VI. CONCLUSIONS

Differnet WSN applications have different timstamping
accuracy requirement. We focus on applications that can
live with some errors and coarse timestamping but desire
extreme simplicity and reliability over deployments. In this

paper, we investigated applicability of using reliable RTCs to
build time synchronized sensor networks without using costly
and complicated time synchronization protocols. We designed
wired and wireless approaches to initialize RTCs and evaluated
their performance via extensive testbed experiments and the
results show high levels of accuracy and robustness.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant no. IIS-1111507. We also thank Doug
Carlson, Nire Rattner and Andreas Terzis for their support in
this work.

REFERENCES

[1] L. M. Oliveira and J. J. Rodrigues, “Wireless sensor networks: a survey
on environmental monitoring,” Journal of communications, vol. 6, no. 2,
pp. 143–151, 2011.

[2] M. Kohli and R. Tiwari, “Wireless sensor networks: Applications and
impact,” IUP Journal of Information Technology, vol. 10, no. 1, p. 56,
2014.

[3] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Wireless sensor networks for structural health monitoring,”
ser. SenSys ’06. New York, NY, USA: ACM, 2006, pp. 427–428.

[4] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas,
G. Pap, J. Sallai, and K. Frampton, “Sensor network-based countersniper
system,” ser. SenSys ’04. New York, NY, USA: ACM, 2004, pp. 1–12.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 147–163, 2002.

[6] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” ser. SenSys ’04. New York, NY, USA: ACM,
2004, pp. 39–49.

[7] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in IPSN’11.

[8] C. Lenzen, P. Sommer, and R. Wattenhofer, “Pulsesync: An efficient and
scalable clock synchronization protocol,” TON, vol. 23, no. 3, 2015.

[9] H. Mohammadmoradi and O. Gnawali, “State of the Art RTC Initial-
ization Approaches,” University of Houston, Department of Computer
Science, Tech. Rep., 10 2016.

[10] M. Buevich, N. Rajagopal, and A. Rowe, “Hardware assisted clock
synchronization for real-time sensor networks,” in RTSS’13.

[11] H. Kim, X. Ma, and B. Hamilton, “Tracking low-precision clocks with
time-varying drifts using kalman filtering,” Networking, vol. 20, no. 1,
2012.

[12] M. Leng and Y.-C. Wu, “Low-complexity maximum-likelihood estima-
tor for clock synchronization of wireless sensor nodes under exponential
delays,” Signal Processing, vol. 59, no. 10, 2011.

[13] J. Koo, R. K. Panta, S. Bagchi, and L. Montestruque, “A tale of two
synchronizing clocks,” in ENSS’09. ACM, 2009, pp. 239–252.

[14] “life under ground,” http://lifeunderyourfeet.org/en/, accessed: 2016-04-
13.

[15] J. A. Stankovic, A. D. Wood, and T. He, “Realistic applications for wire-
less sensor networks,” in Theoretical Aspects of Distributed Computing
in Sensor Networks. Springer, 2011, pp. 835–863.

[16] D. Basu, G. Moretti, G. S. Gupta, and S. Marsland, “Wireless sensor net-
work based smart home: Sensor selection, deployment and monitoring,”
in SAS’13.

[17] H. Mohammadmoradi, O. Gnawali, D. Moss, R. Boelzle, and G. Wang,
“The impact of user engagement in the effectiveness of energy saving
programs,” in Proceedings of the IPSN’16. IEEE, 2016.

[18] J. Gutirrez, J. F. Villa-Medina, A. Nieto-Garibay, and M. . Porta-Gndara,
“Automated irrigation system using a wireless sensor network and
gprs module,” IEEE Transactions on Instrumentation and Measurement,
vol. 63, no. 1, pp. 166–176, Jan 2014.

[19] “Chronodot key features,” http://goo.gl/UdUIX5, accessed: 2016-04-13.
[20] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time protocol

version 4: Protocol and algorithms specification,” Tech. Rep., 2010.

